Графен из чего делают: две секунды в микроволновой печи / Хабр

Битва за графен: мировое состязание за лидерство в технологиях будущего

Графен — двумерный материал, представляющий собой форму углерода, толщиной в один атом. С тех пор как в 2010 году выпускникам МФТИ Андрею Гейму и Константину Новоселову присудили Нобелевскую премию за передовые опыты с этим новым материалом, в мире начался настоящий графеновый бум

Графен — это всего лишь одна из форм углерода, который может существовать во множестве кристаллических модификаций: например, как графит, алмаз, фуллерены или углеродные нанотрубки. Непосредственно графен можно представить в виде одной плоскости объемного кристалла графита — это первый кристалл толщиной всего лишь в один атом, экспериментально полученный в лабораторных условиях.

Закончили чтение тут

C одной стороны это очень простой материал, с другой очень сложно совместить двумерный материал толщиной в один атом с трехмерным миром приборов. Внешний мир — электроды, подложки и т.п. — оказывает влияние на графен, его свойства — это все очень трудно исследовать. Впервые это удалось сделать нашим соотечественникам, которые сделали это за рубежом — в Манчестерском университете. С тех пор их пионерские работы были процитированы в ведущих научных журналах более 100 тысяч раз. Интерес к графену по сей день остается беспрецедентным. В мире фактически началась новая гонка — за лидерство на зарождающемся рынке двумерных материалов. Государства в разных частях света тратят миллиарды долларов на графеновые исследования. Чем это вызвано? Как обстоят дела с исследованиями и разработками в этой области на Родине нобелевских лауреатов? О ландшафте графеновых исследований и о том, какое место на нем занимает Россия — в первом материале серии «Битва за графен».

Фото DR

Казалось бы на данный момент графен достаточно хорошо исследован, но тем не менее он еще таит в себе сюрпризы. Например, из графена можно удалять атомы углерода (с какой-то периодичностью или в виде какого-то узора) — получается материал с другими свойствами. Можно в графен добавлять атомы других материалов — это еще один материал с новыми свойствами. Свойства графена во многом определяются подложкой, например, химические свойства графена в зависимости от материала подложки еще не изучены. Очень мало информации и по физическим свойствам в зависимости от материала подложки. Техника постоянно совершенствуется, мы учимся работать со все меньшими и меньшими объектами и получаем все больше интересной информации. Одна из ключевых задач — встроить графен (двумерные материалы) в существующий цикл микроэлектронного производства, пока все такие устройства делаются вручную.

Разнообразие применений графена возможно из-за его уникальных физико-химических свойств, которые моментально сделали этот двумерный материал объектом для фундаментальных исследований. Так, двумерность графена, а также характерное для него особое поведение электронов, открыли возможность для экспериментальной демонстрации различных явлений квантовой физики, среди которых квантовый эффект Холла, парадокс Клейна, сверхпроводимость и многие другие. Графен обладает высокой электропроводностью и рекордной среди всех известных материалов теплопроводностью. Для него характерна высокая прочность (в 200 раз прочнее стали) и гибкость, химическая и термическая стабильность, а также самая большая площадь поверхности на единицу массы.

Фото DR

У рассматриваемого материала интересные оптические свойства:  является перспективным материалом для создания оптических инструментов, работающих одновременно в широком диапазоне частот — от видимого света до терагерцового или даже микроволнового излучения. Это лишь небольшая часть из интересных особенностей графена, но главное — его свойства сильно зависят от материала подложки, наличия дефектов и примесей, внешних воздействий и многого другого. Так что поле для научных изысканий здесь очень велико, и вложения в эту сферу только продолжат расти.

  • И да и нет: ответ на главный вопрос о квантовом компьютере

Исследовательский бум

Поэтому доля научных публикаций с упоминанием графена год от года непрерывно растет. Если в 2010 году мы имели 0,2% относительно всех научных публикаций, то в 2016 году — это уже 1% с прогнозом на 2017 — около 1,3%, согласно базе данных научных публикаций Web of Science. Для сравнения: в 2016 году доля публикаций с упоминанием слов «полупроводник» — 0,8%, «золото» — 0,9% , «лазер» — 1,7%. Абсолютным лидером в сфере графеновых исследований остается Китай: этой стране принадлежит почти половина всех научных публикаций с упоминанием графена. 12% самых высокоцитируемых работ, написанных китайскими учеными в ушедшем году, — публикации о графене. Уже сейчас с Китаем сложно конкурировать даже США, но говорить о финальной расстановке сил пока рано. Министр финансов Великобритании Джордж Осборн заявил, что Британия, где расположен один из крупнейших графеновых центров в мире, получивший название «Родина графена», стремится удержать мировое лидерство в освоении графеновых технологий в условиях серьезной конкуренции со стороны Китая и Южной Кореи. К гонке за лидерство подключились исследовательские центры Сингапура, Германии, Австралии, Японии, стремительно догоняющей их Индии и… Ирана.

Где мы?

Если в первые годы после открытия графена Россия была весьма заметным игроком в области графеновых исследований, то сейчас мы с каждым годом понемногу отстаем: 5,6% публикаций в середине 2000-х и 2,3 % в 2016 году. По общему числу публикаций с упоминанием графена за 2014-2016 гг. мы находимся на 14 месте, а по числу публикаций с высоким индексом цитирования или среднему цитированию на одну работу мы не входим в список 20 лучших стран. При этом надо отметить, что такое положение нашей страны обеспечиваются главным образом за счет сотрудничества с зарубежными коллегами. Например, доля России в высокоцитируемых работах 2014-2016 гг., где авторы в качестве места работы указали российскую научную организацию, составляет всего 12%. То есть даже имеющиеся скромные показатели — не полностью заслуга нашей страны. Свидетельством тому является отсутствие патентов и приглашенных докладов на профильных международных конференциях. Так, на крупнейшей конференции Graphene за последние три года Россия была представлена только одним устным докладом.

Графен и Россия

В нашей стране исследования с графеном проводятся по инициативе отдельных ученых. Помимо ряда институтов РАН в исследовании графена заметны успехи  МГУ, СПбГУ и МФТИ. Физтех (МФТИ), помимо нобелевских лауреатов, подарил миру графена целый ряд других выдающихся ученых. Это, например, Александр Баландин (исследование теплопроводности графена), Леонид Левитов (теоретические исследования графена), Виктор Рыжий (графеновая оптоэлектроника) и другие. Не так давно на Физтехе был создан Центр фотоники и двумерных материалов, объединяющий несколько лабораторий. Его основная задача — разработка и создание с использованием графена и других двумерных материалов принципиально нового класса оптоэлектронных приборов и компонентов широкого спектра применений (наносенсоры, биосенсоры, нанолазеры, инфракрасные камеры, энергоэффективные световые устройства и многое другое). Нам уже удалось создать высокочувствительные графеновые биосенсоры, которые могут помочь в создании новых лекарств и вакцин от опасных заболеваний, в том числе от ВИЧ и рака. А сейчас совместно с датскими коллегами мы работаем над технологиями низкотемпературного синтеза графена, чтобы выращивать его непосредственно на элементах приборов электроники. Это бы позволило создать, например, сверхширокодиапазонные камеры, способные обеспечить видимость в темноте сквозь дым и туман. Однако пока это совершенно не тот масштаб, который бы позволил говорить о претензиях на лидерство.

Кто виноват?

У стран, которые обгоняют нас в графеновой гонке, есть кое-что общее: исследования в области двумерных материалов в них последовательно поддерживаются на государственном уровне. Например, в одном лишь городе-государстве Сингапуре вложения в эту область превышают $300 млн. А Европейская комиссия, запустила программу Graphene Flagship и выделила более €1 млрд на десятилетние исследования и разработки, которые проводят ведущие исследовательские институты и корпорации в 23 европейских странах. При этом только Великобритания дополнительно выделила более £235 млн на эти же цели. И это не считая финансирования, которое выделяется национальными научными фондами на конкурсной основе. В России же отсутствуют какие-либо целевые программы по исследованиям в области графена даже в рамках научных фондов, а ведущие российские университеты, несмотря на отчаянную гонку в мировых рейтингах, не выделяют эту тематику в качестве своих приоритетов.

Что делать?

В странах, которые сделали ставку на графен, ученым дают большой простор для научных исследований: обеспечивают необходимыми финансами и оборудованием, и предоставляют свободу в выборе тем исследований. При этом новые научные результаты — не главное в истории с графеном. Выявляемые и исследуемые уникальные свойства графена позволяют создать на его основе целый класс устройств нового типа, а потому исследовательская гонка сейчас — это гонка за захват рынка графеновых технологий. Причем речь далеко не всегда идет о принципиально новых рынках. Графен  рассматривается в качестве материала, который изменит авиастроение, технологии освоения космоса, вооружение и военную технику, а также энергетическую отрасль. Все это — лишь вопрос времени. Не уделяя должного внимания материалам из двумерного мира, можно потерять позиции в том числе и в этих отраслях. Необходимо осознать важную вещь: в мире произошла графеновая революция, как когда-то с изобретением транзистора состоялась революция в электронике. Каких технологий нам стоит ожидать и когда они выйдут к массовому потребителю — в следующем материале серии.

Графен как пример квантового материала

Химик Александр Слесарев об открытии графена, туннельном эффекте и дираковских носителях заряда


Графен — это материал, который известен человечеству, возможно, с самых ранних этапов человеческого развития, но вышел на сцену только сейчас. Сначала надо было его найти, понять, что он собой представляет, и осталось придумать, что с ним делать. Потому что если мы обратимся к современному рынку, то, несмотря на все достижения, несмотря на то, что за графен уже дали Нобелевскую премию и название всем известно, какие-то продукты с ним пока что купить не получается, кроме самого графена.  

 

Что собой представляет графен? Это отдельный слой графита, известного всем со школы, — это пластинки из чистого углерода, связанного в шестиугольники, а графен — одна такая пластинка. В чем заключается проблема: одну пластинку из графита достаточно тяжело достать. Они друг к другу хорошо прилипли, и, даже несмотря на то, что расколоть графит на тонкий пирожок из нескольких пластинок просто, чем тоньше становится пирожок, тем сложнее становится его расколоть. Это первое проявление квантовой природы графена: с уменьшением толщины кристаллика его становится все труднее расколоть, потому что увеличивается связь между слоями.

Это очень занятная история с интерпретацией и значением личности и субъективности в науке, потому что в 1920–1930-е годы Ландау посчитал теоретическую структуру графена, у него получились результаты, и люди интерпретировали их долгое время как то, что графен как таковой существовать не должен, что он нестабилен, его структура должна сама коллапсировать. А позже взяли его и получили. В чем причина? В том, что графен — отдельный слой тоненького одноатомного материала. Чтобы его себе наглядно представить, надо взять на кухне пищевую пленку и на нее посмотреть. Когда пищевая пленка намотана в рулон и рядом лежит много слоев, она прекрасно себя чувствует. А когда мы ее размотаем, отрежем и попробуем подбросить в воздухе, она превратится в некрасивый комок. Но если мы возьмем и натянем пленку на тарелку или другую поверхность, то она будет лежать. Так и с графеном: как только его положили на поверхность, все сразу стало в порядке, он перестал коллапсировать. Графену нужна поддержка, тут ничего удивительного, никакой квантовой черной магии нет, все соответствует обыденным, интуитивным представлениям.

Первой задачей было получить графен в разумных количествах и понять, что он есть, потому что отдельные чешуйки графена можно было получить, взяв графит и нарисовав черту. Там будет несколько листов графена, но, во-первых, мало, а во-вторых, откуда мы узнаем, что это графен? Нужно было, чтобы развилась микроскопия, поверхностные методы, появилось понимание поверхностной науки, и тогда мы смогли посмотреть на графен. В первой работе по графену интересней даже не то, что получили графен, поскольку как такового однослойного графена, по уверениям самих авторов, там не было ― там был малослойный графен. Работа интересна тем, что они ожидали его увидеть, они знали, что там должно быть, как оно должно быть устроено, что они должны увидеть, и они смогли донести это до всего остального мира. Они смогли показать, что материал есть и от него можно ожидать интересные свойства.

Какие свойства от него можно ожидать? Среди людей достаточно широко известно, благодаря средствам массовой информации, что он является отличным проводником, полупроводниковым материалом, что он сверхпрочный. В нем достаточно много интересных свойств, которые уникальны и неуникальны одновременно. Прочность графена превосходит многие материалы, но она сравнима по порядку величины с прочностью таких вещей, как углеродные нанотрубки, молекула белка, молекула ДНК, если ее развернуть в полную линию, как высокомолекулярный полиэтилен. Прочность графена обусловлена тем, что все связи в этом материале ковалентны, а это наиболее прочные возможные связи в природе. Подобная ситуация наблюдается во многих полимерных материалах, во многих цепях.

Если говорить о более интересных электронных свойствах графена, то с ними ситуация в достаточной мере уникальная. Электронные свойства полупроводниковых материалов — это, с одной стороны, просто свойства того, как в них перемещаются носители заряда, то есть электроны. С другой стороны, рассматривать сами электроны зачастую неудобно, поэтому вводится такая абстрактная фигура, как носитель заряда. Это может быть электрон, может быть вакансия, то есть дырка, место, где электрона нет, это может быть более сложная структура. С графеном ситуация такая, что для него можно математически записать движение носителя заряда в таком виде, что уравнение получится по форме своей похожим на уравнение движения света в вакууме с точностью до множителей. Получается, что, как и у света, как у фотонов, у носителей заряда (которых на самом деле не существует ― это математическая абстракция), в графене двигаются всего-навсего электроны и их вакансии, причем далеко не с той скоростью и не в том порядке, как носители заряда. У носителей заряда отсутствует масса, они при приложении любой минимальной силы должны сразу достигать максимально возможной, единственной для них скорости, которая эквивалентна скорости света в вакууме, только это скорость носителя заряда в графене.

Что из этого следует? Это вопрос, который далеко не всегда понятен. Что это значит с точки зрения приложений? Мы не можем сделать аналогичные вещи с фотонами, не можем взять и разогнать фотон или остановить его, просто прикладывая к нему какую-то силу. Фотоны могут менять свою скорость в твердом теле. Эти носители заряда называются дираковскими ― в честь уравнения, которое их описывает, и для них скорость не меняется и не зависит ни от чего. Это означает, что носители заряда пришли в движение ― достаточно удобная интерпретация, что какая-то их доля пришла в движение, какая-то нет, но это одна из возможных моделей. Не всем исследователям понятно, как дело в графене обстоит на самом деле. Но это в целом соответствует ситуации во многих других полупроводниковых материалах, где есть действительно несколько моделей, которые немного противоречат друг другу, но описывают одно и то же вполне адекватно, чтобы работали компьютеры, мобильные телефоны и прочая современная электроника.

Что означает то, что носители заряда не имеют массы и приходят в движение мгновенно? Если мы возьмем кристалл полупроводника и приложим к нему электрическое поле, то пройдет какое-то время между моментом, когда носители заряда придут в движение, и моментом, когда они разгонятся до своей финальной скорости. Если мы будем менять поле достаточно быстро (например, построим процессор и сделаем его тактовую частоту выше), наступит такой момент, когда они просто не будут успевать сдвинуться с места. И проводник, по сути, превратится в диэлектрик для этого эксперимента.

Благодаря тому, что у графена такая интересная статистика движения носителей зарядов, он должен бы оставаться проводящим до намного более высоких частот. Получается, что мы должны быть способны из этого материала сделать более быстрые полупроводниковые устройства. Мы должны сделать высокочастотные, почти что оптические приборы, которые будут работать как обычные полупроводниковые приборы. Но когда мы об этом говорим, должны иметь в виду особенность графена, которая уникальна, но которая неразрывно связана с тем, что у него такая статистика носителей заряда. В нем нет так называемой запрещенной зоны ― области энергии, в которой носители заряда не могут существовать. В нем нет того, что дает нам, простыми словами, p-n-переход в полупроводниках. Нет этой энергетической дырки между уровнями, благодаря которой мы можем получить полупроводник. Он является не очень хорошо проводящим металлом.

Достаточно сложно задачей было и до сих пор является решить сделать из графена ― из проводника ― полупроводник, ведь он быстро и отлично реагирует. В чем заключается проблема? Как только мы пытаемся это сделать, то должны смотреть на аналогию с дираковскими частицами, которые ведут себя как фотоны. Для фотонов в вакууме нет и быть не может никакой запрещенной зоны. Как только мы создаем запрещенную зону, мы меняем структуру. Когда мы поменяли электронную структуру, у наших носителей заряда появилась масса. Но это не единственное уникальное свойство графена. Даже без запрещенной зоны можно сделать очень много интересных вещей для электроники и оптики.

Другая вещь, связанная с такой интересной статистикой носителя заряда, ― это туннелирование, то есть процесс, когда частица может переходить через потенциальный квантово-механический барьер, не теряя при этом своей энергии. Для обычных частиц есть законы, которые в значительной мере ограничивают подобные переходы, а для дираковских частиц вероятность туннелирования не зависит от того, какая энергия у барьера, ― они могут перепрыгивать через любые из них. К чему это приводит? Если сравнивать с обычным полупроводниковым кристаллом: через него движется носитель заряда, он видит какую-то преграду, допустим тепловое колебание, ударяется об нее и рассеивается. Траектории носителя заряда получаются достаточно короткими. А здесь носитель заряда движется, встречает преграду, она для него как потенциальный барьер неизвестной высоты, он просто перескакивает через него на ту сторону. Получается, что при какой угодно температуре, пока электронная структура остается дираковской, частицы должны путешествовать внутри этого материала по сколь угодно длинным траекториям. Это позволяет нам рассматривать квантовые эффекты при комнатной температуре.

Но здесь есть одна маленькая проблема, которая связана с тем, что стоит положить графен на подложку, стоит его как-то исказить, приложить к нему большой потенциал ― его зонная структура меняется, электроны начинают двигаться вверх или вниз по своей энергетической шкале, все меняется. Он теряет эти свойства, электроны начинают рассеиваться, то есть графен — материал, который трудно использовать. У него есть отличные свойства, но в действительности применить их во многих случаях непросто.

Это привело к тому, что есть интересные работы по применению графена в квантовых устройствах. Был сделан быстрый транзистор, устройства, которые позволяют смешивать две радиоволны, были сделаны какие-то нелинейные приборы. Были сделаны попытки создать зону в графене путем того, что его дополнительно квантовали. Графен тонкий в одном направлении, а его делали тонким в другом направлении, делали из него ленточки, как нанотрубка, только не завернутая в трубочку. Получались ленточки, в которых появляются зоны, и это можно видеть, но статистика зарядов портится. Нам надо помнить о том, что это не только интересные квантово-механические свойства, а это еще и плоский материал, которого можно очень много поместить в очень маленький объем, и это хороший путь для электроники, хоть он и близок к тупику.

Придумывать для графена применение в электронных областях достаточно трудно. Но есть достаточно много альтернативных применений. Если мы вспомним, графен — это плоский лист из атомов, которые довольно близко друг к другу расположены, мы получим мембрану, через которую не проходят газы. Если мы не хотим, чтобы из пластиковой бутылки пива улетала карбонация, то можно забить в пластик немного графена, и газ будет храниться дольше. Еще материал можно окислить, химически модифицировать, и это будет огромная область для химии, для катализа, для батареек, для экологии. Но это очень длинная другая история, про которую я могу рассказывать бесконечно.

 

Александр Слесарев
PhD in Chemistry, научный сотрудник Центра фотоники и квантовых материалов Сколковского института науки и технологий

    

Источник: postnauka.ru

графен | химия | Британика

графен: атомно-силовая микроскопия

Просмотреть все материалы

Ключевые люди:
Сэр Андре Гейм
Константин Новоселов
Похожие темы:
углерод
фуллерен
углеродная нанотрубка
графит
С60

Просмотреть весь связанный контент →

Откройте для себя науку о графеновых мембранах для опреснения воды

Посмотреть все видео к этой статье

графен , двумерная форма кристаллического углерода, либо один слой атомов углерода, образующих сотовую (гексагональную) решетку, либо несколько связанных слоев этой сотовой структуры. Слово графен при использовании без указания формы (например, двухслойный графен, многослойный графен) обычно относится к однослойному графену. Графен является исходной формой всех графитовых структур углерода: графита, который представляет собой трехмерный кристалл, состоящий из относительно слабо связанных графеновых слоев; нанотрубки, которые можно представить в виде свитков графена; и buckyballs, сферические молекулы, сделанные из графена с некоторыми шестиугольными кольцами, замененными пятиугольными кольцами.

Первые исследования графена

Теоретическое исследование графена было начато в 1947 году физиком Филипом Р. Уоллесом как первый шаг к пониманию электронной структуры графита. Термин графен был введен химиками Ханнс-Питером Бёмом, Ральфом Сеттоном и Эберхардом Штумппом в 1986 году как комбинация слова графит , относящегося к углероду в его упорядоченной кристаллической форме, и суффикса -ен , обозначающего к полициклическим ароматическим углеводородам, в которых атомы углерода образуют гексагональные или шестигранные кольцевые структуры.

В 2004 году физики Манчестерского университета Константин Новоселов и Андрей Гейм и их коллеги выделили однослойный графен, используя чрезвычайно простой метод отслаивания от графита. В их «методе скотча» использовалась клейкая лента для удаления верхних слоев с образца графита, а затем нанесения слоев на материал подложки. Когда лента была удалена, некоторое количество графена осталось на подложке в однослойном виде. На самом деле получение графена само по себе не является сложной задачей; каждый раз, когда кто-то рисует карандашом на бумаге, карандашный след содержит небольшую долю однослойного и многослойного графена. Достижением манчестерской группы стало не только выделение чешуек графена, но и изучение их физических свойств. В частности, они продемонстрировали, что электроны в графене обладают очень высокой подвижностью, а это означает, что графен можно использовать в электронных приложениях. В 2010 году Гейм и Новоселов были удостоены Нобелевской премии по физике за свою работу.

В этих первых экспериментах подложкой для графена был кремний, естественно покрытый тонким прозрачным слоем диоксида кремния. Оказалось, что однослойный графен создает оптический контраст с диоксидом кремния, достаточно сильный, чтобы сделать графен видимым в стандартный оптический микроскоп. Эта видимость имеет две причины. Во-первых, электроны в графене очень сильно взаимодействуют с фотонами на частотах видимого света, поглощая около 2,3% интенсивности света на атомный слой. Во-вторых, оптический контраст сильно усиливается интерференционными явлениями в слое диоксида кремния; это те же явления, которые создают радужные цвета в тонких пленках, таких как мыльная пленка или масло на воде.

Электронная структура графена

Основная электронная структура графена и, как следствие, его электрические свойства весьма своеобразны. Применяя напряжение затвора или используя химическое легирование адсорбированными атомами и молекулами, можно создать либо электронную, либо дырочную (область, где отсутствует электрон, действующий как положительный электрический заряд) проводимость в графене, аналогичную проводимости, создаваемой в полупроводниках. . Однако в большинстве полупроводников существуют определенные энергетические уровни, на которых электроны и дырки не имеют разрешенных квантовых состояний, и, поскольку электроны и дырки не могут занимать эти уровни, при определенных напряжениях на затворе и типах химического легирования полупроводник действует как изолятор. Графен, с другой стороны, не имеет изоляторного состояния, и проводимость остается конечной при любом легировании, в том числе при нулевом легировании. Существование этой минимальной проводимости для нелегированного случая является разительным отличием графена от обычных полупроводников. Электронные и дырочные состояния в графене, связанные с переносом носителей заряда, аналогичны состояниям ультрарелятивистских квантовых частиц, то есть квантовых частиц, движущихся со скоростью света (конечная скорость в природе, согласно теории относительности).

Сотовая решетка графена на самом деле состоит из двух подрешеток, обозначенных A и B, так что каждый атом в подрешетке A окружен тремя атомами подрешетки B, и наоборот. Это простое геометрическое расположение приводит к тому, что электроны и дырки в графене обладают необычной степенью внутренней свободы, обычно называемой псевдоспином. Фактически, делая аналогию более полной, псевдоспин имитирует спин или внутренний угловой момент субатомных частиц. В рамках этой аналогии электроны и дырки в графене играют ту же роль, что и частицы и античастицы (например, электроны и позитроны) в квантовой электродинамике. Однако в то же время скорость электронов и дырок составляет лишь около 1/300 скорости света. Это делает графен испытательным полигоном для физики высоких энергий: некоторые квантово-релятивистские эффекты, которые трудно достижимы в экспериментах с субатомными частицами с использованием ускорителей частиц, имеют явные аналоги в физике электронов и дырок в графене, которые легче измерить и изучить, поскольку их меньшей скорости. Примером может служить парадокс Клейна, в котором ультрарелятивистские квантовые частицы, вопреки интуиции, легко проникают через очень высокие и широкие энергетические барьеры. Таким образом, графен обеспечивает мост между материаловедением и некоторыми областями фундаментальной физики, такими как релятивистская квантовая механика.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
Подписаться сейчас

Графен — новый чудо-материал | Физика

Молекула бесценна, но дело не в цене – несколько сотен долларов за килограмм. Ценность заключается в его потенциале. Молекула, о которой идет речь, называется графен, и ЕС готов выделить на нее 1 миллиард евро (1,3 миллиарда долларов) в период с 2013 по 2023 год, чтобы выяснить, сможет ли она преобразовать ряд секторов, таких как электроника, энергетика, здравоохранение и строительство. Согласно Scopus, библиографической базе данных, с 2005 года о графене было написано более 8000 статей9.0003

Как следует из названия, графен извлекается из графита, материала, используемого в карандашах. Как и графит, графен полностью состоит из атомов углерода, а 1 мм графита содержит около 3 миллионов слоев графена. В то время как графит представляет собой трехмерную кристаллическую структуру, графен представляет собой двумерный кристалл толщиной всего в атом. Углерод идеально распределен в форме шестиугольных сот толщиной всего 0,3 нанометра с расстоянием между каждым атомом всего 0,1 нанометра.

Эта простота со 100% чистым углеродом придает графену некоторые замечательные свойства, очень близкие к расчетным теоретическим, как отмечают авторы «Дорожной карты для графена», опубликованной в журнале Nature в прошлом году.

Графен проводит электричество лучше, чем медь. Он в 200 раз прочнее стали, но в шесть раз легче. Он почти идеально прозрачен, так как поглощает всего 2% света. Он непроницаем для газов, даже таких легких, как водород или гелий, и, если этого недостаточно, на его поверхность можно добавить химические компоненты, чтобы изменить его свойства.

«Графен — это платформа, похожая на шахматную доску, на которую можно ставить любые пешки. Тонкость заключается в поиске правильных позиций. В его простоте есть настоящая красота», — объяснил Винсент Бушиа из Института Нееля. в Гренобле, часть Национального центра научных исследований (CNRS). «Будущее за карандашным графитом!» — сказала Анник Луазо из Национального управления аэрокосмических исследований и исследований (ONERA), придумывая лозунг. Она является представителем Франции в исполнительном офисе Graphene Flagship, исследовательского консорциума, финансируемого ЕС в течение следующих 10 лет.

Проект был официально запущен в прошлом месяце. «Мы уже многому научились, но в определенных ситуациях могут появиться новые результаты — только мы еще не знаем, какие именно», — сказал Марк Гербиг, другой исследователь CNRS, работающий на кафедре физики твердого тела в Университете Париж-Юг Орсе.

Этот чудо-материал прошел долгий путь. Теоретически считалось, что такая двумерная структура нестабильна и поэтому лучше скручивается, как это наблюдалось в 1990-х годах с углеродными нанотрубками.

В 2004 году два ученых, родившихся в России, Андрей Гейм и Константин Новоселов, вместе с другими опубликовали первые электронные измерения, доказывающие, что они выделили графен. Они удалили углеродные чешуйки из графита с помощью кусочков липкой ленты, что в конечном итоге привело к получению Нобелевской премии по физике в 2010 году.

-мерное пространство и небольшие поверхностные флуктуации, подобные волнам, стабилизируют кристалл», — сказал Гербиг. Эксперименты быстро подтвердили чудесное поведение этого нового материала, которое можно объяснить своего рода морем электронов на поверхности, которые ничто не может остановить и которые не взаимодействуют друг с другом. Как будто электроны не имеют массы и движутся со скоростью в 300 раз медленнее скорости света. Математическое уравнение, описывающее их, ближе к уравнению для высокоэнергетических частиц, чем для твердого вещества, отсюда и такие выдающиеся характеристики, которые предполагают так много потенциальных применений.

Будучи прозрачным и хорошим проводником, графен может заменить электроды из индия, используемые в сенсорных экранах. Поскольку графен легкий, его можно интегрировать в композитные материалы, чтобы исключить воздействие молнии на фюзеляжи самолетов. Он также водонепроницаем и идеально подходит для использования в резервуарах с водородом.

Поскольку ничто не может остановить электроны, графен нельзя «выключить», поэтому теоретически он мало применим в транзисторах, которые являются ключевыми компонентами современной электроники. Однако ведутся исследования способов создания искусственной запрещенной зоны, которая позволила бы ее отключить и, следовательно, использовать для этой цели.

Европейский консорциум решил сосредоточиться на ряде приложений. «Наша цель — поддержать инновации в Европе, а также создать сеть специалистов, контактирующих с компаниями для долгосрочных проектов НИОКР», — сказал Стефан Рош, ответственный за один из разделов проекта и исследователь Каталонского института Нанонаука и нанотехнологии в Барселоне.

Кусочек графенового аэрогеля весом всего 0,16 миллиграмма на кубический сантиметр помещают на цветок. Фотография: Лонг Вэй/EPA

Основные шаги в этом процессе уже начаты. Несколько новых компаний уже производят графен, в основном для лабораторий, с использованием различных технологий. «Исторический» с липкой лентой был заменен химическим пилингом. Альтернативой является использование углеродно-кремниевой подложки, которую нагревают для удаления атомов кремния, оставляя на поверхности слой графена. Еще один метод заключается в размещении углерода на поверхности меди, который после нагревания катализирует реакцию образования графена. Команда из Университета Райса в США даже использовала ногу таракана в качестве источника углерода.

В Европе лидерами являются Applied Graphene Materials (AGM) в Великобритании и Avanzare и Graphenea в Испании. «Если мы хотим, чтобы сегодня графен стал эквивалентом кремния в микроэлектронике, важно контролировать материал и его качество», — сказал Этьен Кенель из Французской комиссии по альтернативным источникам энергии и атомной энергии, отвечающий за энергетический аспект Graphene Flagship. который также работает со специалистами-производителями.

Промышленные гиганты тоже в деле. IBM выпустила несколько прототипов электронных компонентов, а Samsung выпустила плоский экран (диагональю 70 см) с графеновыми электродами. Производитель теннисных ракеток Head использовал чемпионов по теннису Новака Джоковича и Марию Шарапову для продвижения ракеток, изготовленных из графена. BASF и Daimler-Benz разработали концептуальный электромобиль под названием Smart Forvision, в котором графен используется в проводящем электронном текстиле. В 2012 г. компания BASF подготовила отчет о будущем графена, прогнозируя объем рынка в 1,5 млрд долларов в 2015 г. и 7,5 млрд долларов в 2025 г.

Само собой разумеется, что Китай также участвует в гонке: в Европе опубликовано 2600 статей. И с более чем 2200 патентами она превзошла Европу и США.

Прошлым летом один стартап, Bluestone Global Tech, объявил о партнерстве с производителем мобильных телефонов, чтобы в ближайшие месяцы на китайском рынке появились первые сенсорные экраны на основе графена. Тем не менее, массовые приложения пока не разрабатываются.

«Людям продают графен, который на самом деле является графитом, только дороже», — сказал Марк Монтиу из исследовательского центра CEMES в Тулузе на конференции по композитным материалам на основе графена, состоявшейся в Париже в начале этого года. Строго говоря, графен однослойный, но производственные процессы могут создавать стопки из нескольких слоев. Когда создается более 10 слоев, свойства сильно меняются и больше напоминают графит, чем графен. «На сегодняшний день графен не полностью превосходит углеродные нанотрубки», — сказал Монтиу. По словам Луазо, «в композитах необходимо, чтобы молекулы углерода, графена или нанотрубок «соприкасались» друг с другом, чтобы быть проводящими. Это проще для удлиненных нанотрубок, чем для графена в форме чешуек, что объясняет разницу». Разработка композитного материала занимает много времени, и нанотрубки имеют то преимущество, что они являются более зрелым материалом. Исследователи нанотрубок не были рады появлению графена, который привлек внимание и финансирование.

Тем не менее, накопленный опыт работы с нанотрубками очень полезен для ускорения работы над графеном. «На производство первых транзисторов с нанотрубками ушло шесть лет, — сказал Луазо. «С графеном мы провели первые электрические измерения за год».

Что касается медицинского применения, то знание одного материала служит для другого. Важный аспект европейского проекта посвящен тому, как защитить людей, работающих с графеном, а также конечных пользователей, в дополнение к исследованию возможных медицинских применений. «В настоящее время у нас есть исследования, показывающие отсутствие эффекта, в то время как другие указывают на потенциальный риск», — сказал Альберто Бьянко, руководитель отдела исследований CNRS в Институте молекулярной и клеточной биологии в Страсбурге, который является соруководителем аспектов здравоохранения и окружающей среды европейского проекта.

На самом деле, как и в случае с углеродными нанотрубками, необходимо учитывать значительное разнообразие типов графена. Размер, безусловно, имеет значение, но не менее важно и химическое состояние. Молекула может быть окислена в большей или меньшей степени или содержать различное количество остаточных примесей в результате синтеза графена или построения его слоев. Однозначного ответа нет. В статье, опубликованной в апреле в Angewandte Chemie, научном журнале Немецкого химического общества, Бьянко процитировал несколько противоречивых исследований, некоторые из которых обнаружили токсическое воздействие на микроорганизмы, а другие нет. Также ничего не известно о том, как графен может повредить клетки. Прорезает ли графен клеточную стенку перпендикулярно или покрывает ячейку?

«Одно из оптимистичных замечаний заключается в том, что химия может позволить нам модулировать биологическую активность этого наноматериала», — сказал Бьянко. Например, связывая различные химические группы, можно сделать графен более или менее растворимым или направить его на заданную терапевтическую цель. Поэтому требуется дополнительная работа. Консорциум будет изучать воздействие на различные типы клеток (раковые, нейрональные, связанные с иммунной системой и т. д.), а также на земноводных.

Еще одно преимущество графена заключается в том, что он открывает пути к другим двумерным материалам размером с атомы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *