Свойства оконного стекла: Окна.РФ | 404 Not Found

Виды и свойства стекла — Диаэм в Москве

Стекло – это неорганическая смесь, расплавленная при высокой температуре, которая затвердевает при охлаждении, но не кристаллизуется.

Виды стекла

Кварцевое стекло


Кварцевое стекло получают плавлением кремнезёмистого сырья высокой чистоты. Кварцевое стекло состоит из диоксида кремния SiO2 и является самым термостойким стеклом: коэффициент его линейного расширения в пределах 0 — 1000 °С составляет всего 6х10-7. Поэтому раскаленное кварцевое стекло, опущенное в холодную воду, не растрескивается.


Температура размягчения кварцевого стекла, при которой достигается динамическая вязкость 107 Пуаз (10 Пахс) равна 1250 °С. При отсутствии значительных перепадов давления кварцевые изделия можно применять до этой температуры. Полное же плавление кварцевого стекла, когда из него можно изготавливать изделия, наступает при 1500-1600 °С.


Известно два сорта кварцевого стекла: прозрачный кварц и молочно-матовый. Мутность последнего вызвана обилием мельчайших пузырьков воздуха, которые при плавке стекла не могут быть удалены из-за высокой вязкости расплава. Изделия из мутного кварцевого стекла обладают почти такими же свойствами, как и изделия из прозрачного кварца, за исключением оптических свойств и большей газовой проницаемости.


Поверхность кварцевого стекла обладает незначительной адсорбционной способностью к различным газам и влаге, но имеет наибольшую газопроницаемость среди всех стекол при повышенной температуре. Например, через кварцевую трубку со стенками толщиной в 1 мм и поверхностью 100 см2 при 750 °С за один час проникает 0,1 см3 Н2, если перепад давлений составляет 1 атм (0,1 МПа).


Кварцевое стекло следует тщательно предохранять от всяких загрязнений, даже таких как жирные следы от рук. Перед нагреванием кварцевого стекла имеющиеся на нем непрозрачные пятна снимают при помощи разбавленной фтороводородной кислоты, а жировые — этанолом или ацетоном.


Кварцевое стекло устойчиво в среде всех кислот, кроме HF и Н3РO4. На него не действуют до 1200 °С С12 и НСl, до 250 °С сухой F2. Нейтральные водные растворы NaF и SiF4 разрушают кварцевое стекло при нагревании. Оно совершенно непригодно для работ с водными растворами и расплавами гидроксидов щелочных металлов.


Кварцевое стекло при высокой температуре сохраняет свои электроизоляционные свойства. Его удельное электрическое сопротивление при 1000 °С равно 106 Омхсм.

Обычное стекло


К обычным стеклам относятся известково-натриевое, известково-калиевое, известково-натриево-калиевое.


Известково-натриевое (содовое), или натрий-кальций-магний-силикатное, стекло применяют для выработки оконных стекол, стеклотары, столовой посуды.


Известково-калиевое (поташное), или калий-кальций-магний-силикатное, стекло обладает более высокой термостойкостью, повышенным блеском и прозрачностью; используется для выработки высококачественной посуды.


Известково-натриево-калиевое (содово-поташное), или натрий-калий-кальций-магний-силикатное, стекло имеет повышенную химическую стойкость, благодаря смешению окислов натрия и калия; наиболее распространено в производстве посуды.

Боросиликатное стекло


Стекла с высоким содержанием SiO2, низким – щелочного металла и значительным – оксида бора B2O3 называются боросиликатными. Борный ангидрид действует как флюс для кремнезема, так что содержание щелочного металла в шихте может быть резко уменьшено без чрезмерного повышения температуры расплавления. В 1915 году фирма Corning Glass Works начала производить первые боросиликатные стекла под торговым названием Pyrex. Стекло марки Pyrex является боросиликатным стеклом с содержанием не менее 80% SiO2, 12-13% В2O3, 3-4% Na2О и 1-2% Аl2О3. Оно известно под разными названиями: Corning (США), Duran 50, Йенское стекло G20 (Германия), Гизиль, Монекс (Англия), ТС (Россия), Совирель (Франция), Simax (Чехия).


В зависимости от конкретного состава стойкость к термоудару таких стекол в 2–5 раз выше, чем у известковых или свинцовых; они обычно намного превосходят другие стекла по химической стойкости и имеют свойства, полезные для применения в электротехнике.


Температура размягчения стекла «пирекс» до динамической вязкости в 1011 пуаз (1010 Пас) составляет 580-590 °С. Тем не менее стекло пригодно для работ при температурах до 800 °С, но без избыточного давления. При использовании вакуума температуру изделий из стекла «пирекс» не следует поднимать выше 650 °С. В отличие от кварцевого стекло «пирекс» до 600 °С практически непроницаемо для Н2, Не, O2 и N2. Фтороводородная и нагретая фосфорная кислоты, так же как и водные растворы (даже 5%-ные) КОН и NaOH, а тем более их расплавы, разрушают стекло «пирекс».

Хрустальное стекло


Хрустальные стекла (хрусталь) — высокосортные стекла, обладающие особым блеском и способностью сильно преломлять свет. Различают свинцовосодержащие и бессвинцовые хрустальные стекла.


Свинцовосодержащие хрустальные стекла — свинцово-калиевые стекла, вырабатывают с добавлением окислов свинца, бора и цинка. Характеризуются повышенным весом, красивой игрой света, мелодичным звуком при ударе; применяют для производства высококачественной посуды и декоративных изделий. Наибольшее применение имеет хрусталь с содержанием от 18 до 24% окислов свинца и 14—16,5% окиси калия (легкий).


К бессвинцовым хрустальным стеклам относятся баритовое, лантановое и др.


Баритовое стекло содержит повышенное количество окиси бария. Обладает лучшим блеском, более высокой светопреломляемостью и удельным весом по сравнению с обычными стеклами, применяют как оптическое и специальное стекло.


Лантановое стекло содержит окись лантана La2О3 и лантаниды (соединения лантана с алюминием, медью и др.). La2О3 повышает светопреломление. Отличается высоким качеством; применяется как оптическое.

Свойства стекла


Плотность стекла зависит от его химического состава. Плотность — отношение массы стекла при данной температуре к его объему, зависит от состава стекла (чем больше содержание тяжелых металлов, тем стекло плотнее), от характера термической обработки и колеблется в пределах от 2 до 6 (г/см3). Плотность — постоянная величина, зная ее, можно судить о составе стекла. Наименьшей плотностью обладает кварцевое стекло — от 2 до 2,1 (г/см3), боросиликатное стекло имеет плотность 2,23 г/см3, наибольшей — оптические стекла с высоким содержанием окислов свинца — до 6 (г/см3). Плотность известково-натриевого стекла составляет около 2,5 г/см3, хрустального — 3 (г/см3) и выше. Табличным значением плотности стекла является диапазон от 2,4 до 2,8 г/см3.


Прочность. Прочностью называется способность материала сопротивляться внутренним напряжениям, возникающим в результате действия внешних нагрузок. Прочность характеризуется пределом прочности. Предел прочности на сжатие для различных видов стекла колеблется от 50 до 200 кгс/мм2. На прочность стекла оказывает влияние его химический состав. Так, окислы СаО и B2O3 значительно повышают прочность, РbО и Al2O3 в меньшей степени, MgO, ZnO и Fe2O3 почти не изменяют ее. Из механических свойств стекол прочность на растяжение является одним из важнейших. Объясняется это тем, что стекло работает на растяжение хуже, чем на сжатие. Обычно прочность стекла на растяжение составляет 3,5—10 кгс/мм2, т. е. в 15—20 раз меньше, чем на сжатие. Химический состав влияет на прочность стекла при растяжении примерно так же, как и на прочность при сжатии.


Твердость стекла, как и многие другие свойства, зависит от примесей. По шкале Мооса она составляет 6-7 ед, что находится между твёрдостью апатита и кварца. Твердость различных видов стекла зависит от его химического состава. Наибольшую твердость имеет стекло с повышенным содержанием кремнезема — кварцевое и боросиликатное. Увеличение содержания щелочных окислов и окислов свинца снижает твердость; наименьшей твердостью обладает свинцовый хрусталь.


Хрупкость — свойство стекла разрушаться под действием ударной нагрузки без пластической деформации. Сопротивление стекла удару зависит не только от его толщины, но и от формы изделия, наименее устойчивы к удару изделия плоской формы. Для повышения прочности к удару в состав стекла вводят окислы магния, алюминия и борный ангидрид. Неоднородность стекломассы, наличие дефектов (камней, кристаллизации и других) резко повышают хрупкость. Сопротивление стекла удару увеличивается при его отжиге. В области относительно низких температур (ниже температуры плавления) стекло разрушается от механического воздействия без заметной пластической деформации и, таким образом, относится к идеально хрупким материалам (наряду с алмазом и кварцем). Данное свойство может быть отражено удельной ударной вязкостью. Как и в предыдущих случаях, изменение химического состава позволяет регулировать и это свойство: например, введение брома повышает прочность на удар почти вдвое. Для силикатных стекол ударная вязкость составляет от 1,5 до 2 кН/м, что в 100 раз уступает железу. На хрупкость, стекол влияют однородность, конфигурация и толщина изделий: чем меньше посторонних включений в стекле, чем более оно однородно, тем выше его хрупкость. Хрупкость стекол практически не зависит от состава. При увеличении в составе стекол B2O3, SiO2, Al2O3, ZrO2, MgO хрупкость незначительно понижается.


Прозрачность – одно из важнейших оптических свойств стекла. Определяется отношением количества прошедших через стекло лучей ко всему световому потоку. Зависит от состава стекла, обработки его поверхности, толщины и других показателей. При наличии примесей окиси железа прозрачность уменьшается.


Термостойкость стекла характеризуется его способностью выдерживать, не разрушаясь, резкие изменения температуры и является важным показателем качества стекла. Зависит от теплопроводности, коэффициента термического расширения и толщины стекла, формы и размеров изделия, обработки поверхности, состава стекла, дефектов. Термостойкость тем выше, чем выше теплопроводность и ниже коэффициент термического расширения и теплоемкость стекла. Толстостенное стекло менее термостойко, чем тонкое. Наиболее термостойко стекло с повышенным содержанием кремнезема, титана и бора. Низкую термостойкость имеет стекло с высоким содержанием окислов натрия, кальция и свинца. Хрусталь менее термостоек, чем обычное стекло. Термостойкость обыкновенного стекла колеблется в пределах 90—250 °С, а кварцевого: 800—1000°С. Отжиг в специальных печах повышает термостойкость в 2,5—3 раза.


Теплопроводность — это способность материала, в данном случае стекла, проводить тепло без перемещения вещества этого материала. У стекла коэффициент теплопроводности равен 1-1,15 Вт/мК.


Тепловое расширение — это увеличение линейных размеров тела при его нагревании. Коэффициент линейного теплового расширения стекол колеблется от 5·10-7 до 200·10-7. Самый низкий коэффициент линейного расширения имеет кварцевое стекло — 5,8·10-7. Величина коэффициента термического расширения стекла в значительной степени зависит от его химического состава. Наиболее сильно на термическое расширение стекол влияют щелочные окислы: чем больше содержание их в стекле, тем больше коэффициент термического расширения. Тугоплавкие окислы типа SiO2, Al2O3, MgO, а также B2O3, как правило, понижают коэффициент термического расширения.


Упругость — способность тела возвращаться к своей первоначальной форме после устранения усилий, вызвавших деформацию тела.


Упругость характеризуется модулем упругости. Модуль упругости — величина, равная отношению напряжения к вызванной им упругой относительной деформации. Различают модуль упругости при осевом растяжении — сжатии (модуль Юнга, или модуль нормальной упругости) и модуль сдвига, характеризующий сопротивление тела сдвигу или сколу и равный отношению касательного напряжения к углу сдвига.


В зависимости от химического состава модуль нормальной упругости стекол колеблется в пределах 4,8х104…8,3х104, модуль сдвига —2х104—4,5х104 МПа. У кварцевого стекла модуль упругости составляет 71,4х103 Мпа. Модули упругости и сдвига несколько повышаются при замене SiO2 на СаО, B2O3, Al2O3, MgO, ВаО, ZnO, PbO.

Свойства стекла производства Corning
















Код стекла

0080

7740

7800

7913

0211

Тип

Силикатное

Боро-силикатное

Боро-силикатное

96% Силиката

Цинково-титановое

Цвет

Прозрачное

Прозрачное

Прозрачное

Прозрачное

Прозрачное

Термическое расширение (умножать на 10-7 см/см/°С)

0-300 °С

93,5

32,5

55

7,5

73,8

25 °С, до темп. застывания

105

35

53

5,52

-

Верхний предел рабочей темп. для отожженого стекла (для механических свойств)

Норм. эксплуатация, °С

110

230

200

900

-

Экстрем. эксплуатация, °С

460

490

460

1200

-

Верхний предел рабочей темп. для закаленного стекла (для механических свойств)

Норм. эксплуатация, °С

220

260

-

-

-

Экстрем. эксплуатация, °С

250

290

-

-

-

6,4 мм толщиной, °С

50

130

-

-

-

12,7 мм толщиной, °С

35

90

-

-

-

Термостойкость, °С

16

54

33

220

-

Плотность, г/см³

2,47

2,23

2,34

2,18

2,57

Коэффициент оптической чувствительности по напряжениям, (нм/см)/(кг/мм²)

277

394

319

-

361

Обзор физических и химических свойств стекол Duran, DWK








Свойства

Коэффициент линейного

расширения α

(20 °C — 300 °C) × 10⁻⁶

Точка

деформации, °С

Плотность, г/см³

Гидролитическая стойкость

DIN ISO 719 IN

Устойчивость к кислотам

DIN 12 116

Устойчивость к щелочам

ISO 695

Тип стекла

Duran

3,3

525

2,23

Не изменяемые водой

Стойкое к действию кислот

Умеренно растворимое в щелочах

Fiorax

4,9

565

2,34

Не изменяемые водой

Стойкое к действию кислот

Умеренно растворимое в щелочах

Натриево-кальциево-

силикатное стекло

9,1

525

2,5

Тугоплавкое для приборов

Стойкое к действию кислот

Умеренно растворимое в щелочах

SWB

6,5

555

2,45

Не изменяемое водой

Стойкое к действию кислот

Слаборастворимое в щелочах

Обзор физических свойств стекол Kimble, DWK









Виды стекла

33 Боросиликатное стекло

51 Боросиликатное стекло

Свойства

Точка деформации, °C

513

530

Температура отжига, °C

565

570

Линейный коэффициент

расширения α (0 — 300 °C)×10⁻⁷

32

55

Плотность, г/см³

2,22

2,33

Пропускание видимого света,

толщина 2 мм

92%

91%

Обзор физических и химических свойств стекол Wheaton, DWK











Виды стекла

Борсиликатные стекла

Натриево-кальциево-

силикатные стекла

180

200

300

320

400

500

800

900

Свойства

Точка деформации, °C

510

505

525

510

530

515

510

496

Температура отжига, °C

560

560

570

560

570

550

548

536

Линейный коэффициент

расширения α (0 — 300 °C)×10⁻⁷

33

33

55

54

60

61

88

91

Плотность, г/см³

2,23

2,23

2,33

2,39

2,41

2,42

2,48

2,50

Устойчивость к кислотам

Стойкое к действию кислот

Стойкое к действию кислот

Стойкое к действию кислот

Стойкое к действию кислот

Стойкое к действию кислот

Стойкое к действию кислот

Умеренно растворимое в кислотах

Умеренно растворимое в кислотах

Устойчивость к щелочам

Слаборастворимое в щелочах

Слаборастворимое в щелочах

Слаборастворимое в щелочах

Слаборастворимое в щелочах

Слаборастворимое в щелочах

Слаборастворимое в щелочах

Сильно растворимое в щелочах

Сильно растворимое в щелочах

физические и механические, как делают стекло

Сегодня сложно представить себе отрасль, где бы не применялось стекло: окна и двери в наших домах, посуда, осветительные и тонкие оптические приборы, украшения, зеркала. Стекло нашло применение в строительстве, автомобильной промышленности, военной промышленности, а также в электронике и других областях.

Итак, что же такое стекло?

Стекло – это переохлажденный расплав из кварцевого песка (около 60%), соды (15-25%), известняка и доломита (15-20 %) и других веществ в зависимости от требований, предъявляемых к стеклу. Благодаря применению различных добавок, а также с помощью изменения процентных соотношений основных компонентов, можно получить стекло с различными характеристиками по плотности, упругости, прочности, твердости и теплопроводности.

Физические и механические свойства стекла

Средняя плотность стекла (оконное, тарное, термостойкое, сортовое) лежит в пределах от 2200 — 2900 кг/м3. Плотность хрусталя отличается: от 3500 — 3700 кг/м3.

Прочность стекла. Следует различать пределы прочности при разных нагрузках. На сжатие стекло “работает” гораздо лучше, чем на “растяжение” или “изгиб”. Это необходимо учитывать при проведении инженерных расчетов. Предел прочности на сжатие обычных стекол составляет от 500 до 2000 МПа ( у оконного примерно 1000 МПа). Предел прочности на растяжение колеблется в пределах от 35 до 100 МПа. Операция закаливания стекла повышает его прочность в 3-4 раза Для лучшего понимания, приведем пределы прочности стали и чугуна: 2000 и 600-1200 МПа соответственно.

Твердость стекла (способность сопротивляться внедрению в него твердого индентора). Для измерение твердости стекла есть Твердость стекла по шкале Мооса – 7 единиц. Некоторые виды стекол бывают твердостью 5—6 по шкале Мооса. Для лучшего понимания твердости по шкале Мооса приведем примеры: гипс имеет 2 единицы; золото, серебро, человеческий ноготь – 3 единицы; твердосплавные инструменты – 9 единиц; алмаз – 10.

Теплопроводность стекла (способность переноса внутренней энергии от более нагретых частей к менее нагретым). Коэффициент теплопроводности стекла весьма незначителен и равен 0,0017—0,032 кал/(см-с-град) или 0,711 до 13,39 Вт/(м*K). Для оконных стекол коэффициент составляет 0,0023 (0,96). Для сравнения, теплопроводность стали – 47 Вт/(м*K), древесины — 0,15 Вт/(м*K), кирпич строительный – 0,2—0,7 Вт/(м*K).

Тепловое расширение (изменение линейных размеров тела при изменении температуры). У стекла оно незначительное – 8,8*10-6 K-1. Для стали, например, коэффициент линейного расширения больше: от 12*10-6 K-1 до 15*10-6 K-1.

Термическая устойчивость – способность выдерживать резкие перепады температуры не разрушаясь. Термическая устойчивость играет большую роль в строительстве работах, так как внутри и снаружи зданий может быть весьма большая разница в температуре. Термостойкость оконных стекол равняется примерно 80—90°С.

Хрупкость. В области температур ниже температуры плавления стекло разрушается от механического воздействия без заметной пластической деформации и поэтому относится к идеально хрупким материалам. Данное свойство может быть отражено удельной ударной вязкостью. Для силикатных стекол ударная вязкость составляет от 1,5 до 2 кН/м, что в 100 раз уступает железу.

Оптические свойства это – светопрозрачность, светопоглощение, отражение и преломление света. Светопоглощение света у стекла мало. Для оконного стекла равняется примерно 88%. Прозрачное стекло одинаково пропускает все цвета спектра. Кроме того, чем лучше отполировано стекло, тем больше оно пропускает света, и наоборот. Царапины и загрязнения сильно снижают прозрачность.

Звукоизоляция. Перегородки из закаленного стекла имеют шумоизоляцию от 25 Дб (с толщиной 10 мм без пленки) и могут быть использованы как в переговорных комнатах, так и для разделения рабочих зон в помещениях для работы сотрудников офиса.

Руководство по свойствам стеклянных материалов

Обычно стекло представляет собой твердое и хрупкое вещество, обычно прозрачное или полупрозрачное. Он может состоять из смеси песка, соды, извести или других материалов. В наиболее распространенном процессе формования стекла сырье нагревается до тех пор, пока оно не станет расплавленной жидкостью, а затем быстро охлаждается для создания закаленного стекла.

Swift Glass является лидером в производстве стекла. У нас есть материалы от самых разных производителей стекла, таких как:

  • КОРНИНГ
  • ШОТТ
  • Витро
  • ГЭ

Каждый материал, который мы храним, тщательно отобран по своим физическим свойствам и уникальным характеристикам.

Некоторые из наших предложений включают:

  • Различные варианты смотрового стекла для использования в различных отраслях промышленности
  • Стекло SCHOTT BOROFLOAT® , которое используется в различных областях освещения, оптики и стеклянных пластин благодаря своим полезным свойствам, в том числе отличной механической прочности, устойчивости к экстремальным температурам и исключительной прозрачности
  • Кварцевое флоат-стекло для окон и витрин
  • Pyrex ® (снято с производства) для использования в средах с низким и высоким давлением
  • Vycor ® (снято с производства) для оптики, работающей в условиях высокого давления и высокой температуры

Состав и свойства стеклянных материалов

По сравнению со многими другими материалами стекло обладает высокими показателями твердости. Тем не менее, большинство типов стекла имеют тенденцию быть естественным образом хрупкими, что делает их уязвимыми для поломки или растрескивания в приложениях, где присутствуют удары, давление или напряжения. Чтобы устранить присущую ему хрупкость, инженеры и производители должны тщательно обрабатывать стекло в соответствии с оптимальными протоколами упрочнения/отпуска.

Типы стекла можно разделить по механическим и термическим свойствам, чтобы определить, для каких областей применения они наиболее подходят. В процессе выбора важно учитывать следующие свойства стеклянных материалов:

Вязкость

Вязкость является мерой внутреннего трения жидкости или сопротивления течению. Когда стекло находится в расплавленном жидком состоянии, большинство методов обработки, используемых производителями, требуют, чтобы его вязкость находилась в определенном диапазоне при определенной температуре. Это называется рабочей точкой или уровнем вязкости, при котором производители могут формировать стекло с помощью выдувания, прессования или других операций.

Прочность

Многие стекла — в зависимости от их конкретного состава — могут похвастаться высокой теоретической структурной прочностью. Однако некоторые практические соображения имеют тенденцию значительно снижать их рабочую прочность. Например, следующие факторы могут привести к субоптимальной прочности стекла:

  • Дефекты или дефекты на поверхности стекла
  • Термические напряжения, возникающие в процессе быстрого охлаждения
  • Введение мельчайших кристаллов в поверхность посредством отжига

Дефекты на поверхности стекла могут служить очагами стресса. Сосредоточенное напряжение, создаваемое нагрузкой, оказывающей большее давление, чем может выдержать теоретическая прочность стекла, обычно вызывает растрескивание или поломку. Таким образом, изъяны или дефекты на поверхности стекла значительно снижают прочность изделия на излом. Тем не менее, производители могут устранить или предотвратить появление этих поверхностных дефектов и трещин за счет точности и осторожности в производственном процессе.

Очки различаются по уровню и типу прочности. Например:

  • Закаленное известково-натриевое стекло, также известное как стекло типа III, обладает высокой механической прочностью.
  • Алюмосиликатное стекло

  • обладает высокой прочностью на сжатие, что делает его идеальным для использования в солнечных элементах, покровном стекле и сенсорных дисплеях, среди прочего.
  • Боросиликатное стекло

  • обладает исключительной структурной прочностью и часто используется в стеклянных трубках, медицинских приборах и приборах для исследования космоса.

Тепловое расширение

Стекло имеет тенденцию к расширению при повышении температуры. Кривая теплового расширения стекла предоставляет инженерам и производителям три важных свойства рассматриваемого стекла:

  • Коэффициент теплового расширения измеряет скорость расширения в зависимости от температуры.
  • Температура перехода показывает начало вязкоупругого поведения и период внезапного расширения.

Стекла различаются по своим характеристикам теплового расширения и связанной с этим пригодности для обработки. Например, кварцевое стекло имеет низкий коэффициент теплового расширения, и поэтому его труднее придать форму или деформировать по сравнению с другими типами стекла.

Применение стеклянных материалов

Стекло в качестве основного исходного материала используется в чрезвычайно широком диапазоне применений и отраслей. Ниже приводится список некоторых распространенных стеклянных материалов:

  • Стекло жизненно важно для производства полупроводниковых пластин. Стеклянные пластины выступают в качестве несущей подложки, облегчая безопасное обращение с более тонкими и хрупкими силиконовыми материалами.
  • Дверцы духовых шкафов и поверхности плит обычно изготавливаются из стекла.
  • Биотехнологический сектор использует пластины из боросиликатного стекла для различных медицинских устройств из-за его чистой оптической прозрачности и устойчивости к высоким температурам, радиации и энергии. Стеклянные пластины также служат несущей подложкой для защиты силиконовых устройств, используемых в нанотехнологиях.
  • МЭМ и электроника. Экраны телевизоров, компьютеров и смартфонов сделаны из стекла. Инженеры используют специальные типы стекла для сенсорных дисплеев. Стеклянные пластины также используются в качестве носителей подложек и упаковки пластин для чувствительных компонентов в микроэлектронных механических системах (МЭМ) и электронике.
  • Автомобили и транспорт. Ветровые стекла, фары и фонари подсветки изготовлены из специальных стеклянных материалов. Стекло также используется в качестве исходного материала для многих легких, усиленных конструкционных компонентов, используемых в автомобилях, авиалайнерах, вертолетах, океанских крейсерах и других транспортных средствах.
  • Медицинская техника. В качестве примера использования стекла в области медицины рентгеновские аппараты содержат стекло.
  • Возобновляемая энергия. Стекло с низким содержанием железа или экстрапрозрачное стекло имеет чрезвычайно ограниченные светоотражающие свойства, что делает его идеальным для покрытия солнечных батарей. Максимальное количество солнечного света может проникать через стеклянную крышку и помогать заряжать солнечную батарею.
  • Упаковка для интегральных схем (ИС). Стеклянные сквозные отверстия (TGV) и стеклянные крышки на уровне пластины (WLC) используются для защиты ИС от коррозии или ударов для обеспечения оптимальной функциональности. Они служат для двойной цели удержания контактов внешних цепей на месте.

Партнерство со Swift Glass

Стекло полезно для многих приложений во многих отраслях. Однако важно, чтобы компании использовали стеклянный материал, наиболее подходящий для желаемого применения.

На протяжении почти столетия компания Swift Glass зарекомендовала себя как лидер отрасли в производстве высококачественного стекла на заказ. У нас есть опыт, чтобы удовлетворить уникальные потребности клиентов во многих отраслях, и вы можете быть уверены, что мы поставим превосходную продукцию по разумным ценам.

Если вы хотите узнать больше о том, какой стеклянный материал лучше всего подходит для вашего желаемого применения, загрузите нашу бесплатную Таблицу свойств стеклянных материалов сегодня или свяжитесь с нами, чтобы получить бесплатное предложение для вашего следующего проекта.

Характеристики и свойства стекла как строительного материала

Согласно «Джеймсу Стивенсу Керлу и Сьюзен Уилсон» (авторы Оксфордского словаря архитектуры), «стекло представляет собой полу- или полностью прозрачный твердый, хрупкий, блестящий материал, магматический сплав кремнезема (обычно песка) с щелочной натриевой или калиевой солью и добавленными ингредиентами. Судя по всему, он стал использоваться для остекления окон больших зданий во времена Римской империи». Основываясь на важных характеристиках и свойствах стекла, оно считается лучшим материалом будущего в строительстве.
В современной архитектуре преобладает использование стекла, поскольку растет спрос на прозрачные строительные элементы. Традиционно стекло использовалось как единое стекло в сочетании с несущей рамой. Но если мы посмотрим сегодня, стекло как строительный материал также используется в качестве основного структурного элемента в виде стеклянных ребер, стен и балок. Согласно «Laufs Wilfried & Luible Andreas» (2003 г.) (опубликовано во «Введении об использовании стекла в современных зданиях»), стекло — это волшебный строительный материал, поскольку оно имеет различные применения в дверях, окнах и фасадах зданий в зависимости от его характеристик и свойств. Он предлагает людям различные варианты выбора в зависимости от таких факторов, как безопасность, защищенность, функции, связанные с окружающей средой (самоочистка, прозрачность для солнечного и теплового излучения, видимость) и такие качества, как устойчивость к царапинам и т. д.

 

Стекло и стеклянные блоки

Создавайте удивительные и современные фасады с помощью керамического печатного стекла!

Характеристики стекла как строительного материала

Ниже приведены свойства и характеристики стекла.

01. Твердость и хрупкость

Это твердый материал, так как он имеет большую ударопрочность при приложении нагрузки. Однако в то же время это хрупкий материал, так как он сразу ломается при воздействии нагрузки.

02. Устойчивость к атмосферным воздействиям

Он устойчив к атмосферным воздействиям, так как выдерживает воздействие дождя, солнца и ветра. Он может поглощать, отражать и преломлять свет, поскольку позволяет нам контролировать естественный свет и управлять им, чтобы влиять на нашу повседневную деятельность и регулировать наше психическое и физическое здоровье.
Обладает высокой размерной стабильностью, так как имеет низкое значение теплового расширения. (т. е. изменение его объема в зависимости от изменения температуры по сравнению с другими материалами очень мало.)

03. Изоляция

Это превосходный изолятор от тепла, электричества и электромагнитного излучения благодаря хорошей изолирующей реакции на пропускание видимого света.
Определенный специальный тип стекла обладает высокой устойчивостью к ультрафиолетовому, инфракрасному и рентгеновскому излучению. Обладает отличной устойчивостью к передаче звука при условии использования соответствующей толщины.

04. Химическая стойкость

Выдерживает воздействие химической реакции в различных условиях окружающей среды или кислотное воздействие.
Обладает отличной стойкостью к большинству химических веществ, включая растворы неорганических щелочей и кислот, таких как аммиак и серная кислота.

05. Разновидности цвета и формы

Его можно выдувать, вытягивать и прессовать до любого цвета, формы и разнообразия, и он доступен на рынке в зависимости от его использования, требований к размерам и требований безопасности.

06. Прозрачность

Прозрачность – это одно из свойств стекла, которое создает визуальную связь с внешним миром. С появлением технологий прозрачное стекло также можно переделывать, делая его непрозрачным.

07. Огнестойкое остекление

По данным «Laufs Wilfried & Luible Andreas» (2003 г.), современные продукты остекления обеспечивают огнестойкость до 120 минут. Прозрачное остекление является защитным, становясь непрозрачным, если оно подвергается воздействию температуры выше 120°C. Это достигается с помощью специальных прозрачных гелей. (Опубликовано во Введении по использованию стекла в современных зданиях).

08. Модификация свойств

Также можно изменить некоторые свойства для различных целей. Основные процессы модификации поверхности перечислены ниже, и сами их названия предполагают различные свойства стекла, до которых оно может быть изменено в зависимости от их использования в здании.

Стекло и стеклянные блоки

Различные виды обработки стекла

Список процессов модификации поверхности стекла:

(a) Противозапотевающее покрытие:
Это средство против запотевания, уменьшающее количество капель воды. поверхностное натяжение, которое заставляет их рассеиваться в невидимом тонком листе. Этот лист обеспечивает четкое и свободное от тумана зрение.
(b) Антибликовое покрытие:
Это обработка для уменьшения отражения. Он дает меньше бликов. Многие покрытия состоят из тонких прозрачных тонких пленок с чередующимися слоями с контрастным показателем преломления.
(c) Химически упрочненное стекло:

Это обработка поверхности, происходящая при температуре ниже температуры плавления стекла. Это безопасное стекло, закаленное стекло, стекло с проволочной сеткой и многослойное стекло. Кроме того, в случае поломки оно разбивается на более крупные осколки, не такие острые, как у незакаленного стекла. Но в случае многослойного стекла оно скрепляет осколки стекла при разрушении. Держится за счет промежуточного слоя, между 2-мя слоями стекла.

Обеспечивает повышенную устойчивость к царапинам, ударам, прочность на изгиб и повышенную термостойкость. Армированное стекло предотвращает падение стекла во время пожара.

Стекло и стеклянные блоки

Армированное стекло: все, что вам нужно знать!

(d) Антикоррозийное покрытие:
Помогает защитить поверхность стекла, предотвращая коррозию из-за таких загрязняющих веществ, как вода, тепло и влажность. Таким образом, он устойчив к воде.
(e) Дещелочное покрытие:
Это процесс модификации поверхности, применимый к стеклам, содержащим ионы щелочных металлов. Здесь создается тонкая поверхность, содержащая более низкую концентрацию щелочных ионов, чем первоначально присутствующая. Это изменение состава поверхности изменяет свойства поверхности, тем самым повышая устойчивость к коррозии.
(f) Слой водородного затемнения:
Это химический процесс, препятствующий прохождению света.

(г) Теплоизоляционное покрытие или двойное остекление или двойное остекление:

Оно состоит из двух или трех слоев стекла, разделенных вакуумным или газонаполненным пространством для уменьшения теплопередачи через ограждающую конструкцию. Он специально используется для тепло- или звукоизоляции как для низкочастотных, так и для высокочастотных звуков.

(h) Процесс пескоструйной обработки и кислотного травления (матовое стекло): 

Кислотное травление — это непрерывный химический процесс, который придает стеклу бархатистость и мягкость, значительно снижая его прозрачность, но не Светопропускание. Это старый метод печати изображений на стекле.
Пескоструйная обработка — это процесс пескоструйной обработки поверхности стекла песком, который посыпает поверхность, придавая ей молочно-белый вид. Обычно это делается с помощью высокоскоростной машины, бомбардирующей стеклянную панель песком.

Стекло и стеклянные блоки

Матовое стекло: для частного и красивого интерьера!

(i) Покрытие с низким коэффициентом излучения:
Позволяет свести к минимуму количество инфракрасного и ультрафиолетового света, проходящего через ваше стекло, без уменьшения количества света, проникающего в ваши дома. Это покрытие, которое помогает уменьшить теплопередачу.
(j) Пиролитическое покрытие:
Покрытие для превосходных характеристик. Это низкоэмиссионное покрытие, которое наносится при высоких температурах и обжигается в процессе производства флоат-стекла.

Стекло и стеклянные блоки

Флоат-стекло: все, что вам нужно знать!

(k) Самоочищающееся покрытие:
Само очищает поверхность стекла от грязи.
(l) Многослойная пленка или смарт-пленочное покрытие:

Изменяет свойство светопропускания при воздействии напряжения, света или тепла. Это покрытие, которое регулирует светопропускание.
(м) Водоотталкивающее покрытие:
Помогает сделать поверхность стекла гидрофильной.
(n) Золь-гелевое покрытие:
Получение термостойких, прозрачных супергидрофобных пленок диоксида кремния.

Стекло и стеклоблоки

Особенности современной архитектуры | Все, что вы должны знать!

Свойства стекла как строительного материала

01. Плотность стекла

Плотность строительного стекла составляет около 2500 кг на кубический метр при 20 0 C температура, при которой листовое стекло имеет массу 2500 кг на квадратный метр на мм толщины.

02. Прочность стекла на сжатие и прочность на растяжение

Прочность стекла на сжатие составляет 1000 Н на кв.мм (10197,2 кг на кв.см) при температуре 20 0 C, что является очень высокой. Это означает, что для разбивания куба стекла размером 1 см требуется нагрузка в 10 тонн.
Прочность стекла на растяжение значительно ниже, чем на сжатие. Прочность на растяжение (прогиб) составляет 40 Н на кв.мм (407,88 кг на кв.см) при 20 0 C для отожженного стекла и от 120 до 200 Н на кв. мм (от 1223,66 до 2039,43 кг на кв. см) при температуре 20 0 C для закаленного стекла.

03. Стекло Модуль Юнга или модуль упругости

Модуль Юнга (сила на единицу площади) любого материала является мерой его жесткости. Чем больше значение модуля Юнга, тем жестче стекло. Модуль Юнга стекла составляет 70 ГПа при температуре 20 0 С (модуль Юнга бетона составляет от 30 до 50 ГПа при 20 0 С температура).

04. Гласс Коэффициент Пуассона

Коэффициент Пуассона напрямую связан с удлинением и сжатием материала при приложении нагрузки в одном направлении, он также известен как коэффициент поперечного сжатия. Площадь поперечного сечения стекла уменьшается по мере его растяжения. Коэффициент Пуассона стекла равен 0,22.

05. Линейное расширение стекла или коэффициент теплового расширения

Линейное расширение – это растяжение на единицу длины для вариации 1 0 Температура С. Коэффициент линейного теплового расширения составляет 9 x 10 -6 м/ 0 C.

В заключение , согласно автору книги «Архитектура и гражданское строительство» Елене Савич и др., трудно представить современную архитектуру без стекла.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *