Точка росы в утеплителе: Точка росы в стене или в утеплителе

Содержание

Точка росы в стене или в утеплителе


Очень вредное явление эта точка росы, увидеть его не просто, но и вычислить тоже не простая задача. Чем опасна и где она должна быть, об этом и попытаюсь рассказать.


 Понятие «точка росы» хорошо известно всем, кто хоть раз сталкивался с решением строительных задач. Место расположения точки росы варьируется – она может находиться как на наружной или внутренней поверхности стены, так и в ее толще. Выяснив, где именно находится точка росы, уже можно определить место, в котором будет конденсироваться влага. Безусловно, лучше, когда точка росы располагается снаружи здания. При соблюдении этого условия влажность внутри помещений жилого дома будет поддерживаться в нормальном состоянии, а климат будет сухим и благоприятным.


Немного теории. Наверняка, Вы знаете о таком понятии, как «относительная влажность воздуха». Но задумывались ли Вы, что оно значит на самом деле? Все просто: в воздухе постоянно содержится то или иное количество влаги, находящейся во взвешенном состоянии. Объем этой влаги имеет прямую зависимость от температуры. Чем более горячий воздух, тем большее количество влаги в нем содержится. Максимальный показатель влажности воздуха – 100%, при котором обязательно указывается, что данная влажность наступила при определенной температуре. Если привести грубые условные данные, то при t +30 °C в 1 куб. м воздуха будет находиться 1 л воды, а при t -30 °C – всего 0,5 литра (оставшиеся 0,5 л воды при понижении t выпадут в осадок).


Этим интересным свойством воздуха объясняются многие природные явления. Например, туман. Вспомните, как после длительного теплого дождя к утру температура воздуха значительно снижается и на горизонте появляется туман – это и есть та «лишняя» вода, конденсирующаяся остывающим воздухом.


К чему мы ведем? Все просто – именно благодаря этому свойству воздуха мы можем объяснить появление точки росы. Иначе говоря, образование той температуры, по достижению которой воздух уже не может удерживать находящуюся в нем воду. И это вовсе не 0 °C, при которой вода замерзает. Точка росы появляется как в связи с изменением температуры, так и из-за перемен влажности, поэтому для ее точного определения имеется ряд специальных формул и созданы особые методики. Хотя в теме нашего сегодняшнего разговора они вряд ли уместны. Остановимся на том, что в зимний период влажность воздуха будет выше снаружи помещения и продолжим наши исследования.


Направление вектора влажности внутрь стены 


В этом случае вектор влажности будет направлен, скорее всего, со стороны внутреннего помещения. При этом далеко не факт, что будет он упираться в стену. Нам любопытно, что произойдет, если стена будет более влажной, чем окружающий ее воздух? Для наглядности возьмем увлажненный кирпич или камень и поместим его в центр комнаты. Что будет дальше? Конечно, наш предмет обретет ту влажность, которая содержится в воздухе, окружающем его – т.е. он высохнет. А вектор влажности в течение всего времени, пока существует разница во влажности предмета и окружающего воздуха, будет направлен из кирпича.


Пароизолятор – пенопласт


Есть такое мнение, но оно далеко не верно. Чтобы убедиться в этом, достаточно посмотреть в СНиП II-3-79. Паропроницаемость пенопласта даже выше, чем у бетона (коэффициент паропроницаемости бетона – 0,03, пенопласта – 0,23). Меньше пара пропускает даже пенополистирол. Несмотря на очевидные доказательства, мнение о пенопласте как о пароизолирующем материале весьма распространено.


Любая стена, из чего бы она ни была построена, имеет ту или иную влажность. Вряд ли мы можем увидеть стену из стали или чугуна, которые влагу не впитывают, а вот все другие традиционные строительные материалы – бетон, кирпич, дерево – активно принимают в себя влагу, находящуюся в окружающем воздухе. Крайне важно учитывать этот факт, а также условия, в которых стена находится. В том случае, когда обе – внешняя и внутренняя – поверхности стены имеют одинаковую либо немного отличающуюся температуру, вся стена будет иметь влажность, идентичную влажности обтекающего ее воздуха. При таких условиях «мокрой» наша стена быть не может.


А какова температура рассматриваемой нами стены? Это вы можете узнать из расчетов, приведенных в статье. Здесь мы хотим отметить лишь то, что увеличивая теплопроводность стены, можно добиться минимальной разницы температур. А что будет, если из конструкции стены убрать утеплитель? Ведь если рассматривать его свойства, то именно утеплитель несет ответственность за приблизительное уравновешивание температур поверхности стены. Тут мы можем вспомнить про мокрый кирпич, который мы положили в помещении. Этот кирпич находился почти в таких же условиях, в каких эксплуатируется стена с утеплителем. Как будут обстоять дела, если мы удалим из стены пенополистирол?


Ситуация, честно говоря, будет не самой радужной.  При таких условиях температура внутренней поверхности стены будет +20 °C, в то время как внешняя поверхность охладится до -20 °C. Данные эти весьма приблизительны, так как из-за высокой теплопроводности стены ее внутренняя поверхность будет иметь температуру ниже, чем у окружающего ее воздуха. Но мы не будем учитывать этот факт, а предположим, что температурный разрыв именно такой. Здесь и проявятся худшие свойства точки росы. Влага будет накапливаться в толще нашей стены, и постепенно начнет проявляться на ее внутренней поверхности. И это даже не вся суть проблемы. Плохая теплоизоляция приведет к смещению точки росы к поверхности внутренней стены. Вспомним, что эта поверхность имеет меньшую, чем внутренний воздух, температуру – к примеру, +5 °C. При условии, что точка росы в теплом помещении с определенной влажностью составляет 10-12 °C, на стене начнет образовываться влага, возникающая практически из воздуха. Доказательством такого явления может служить пример трубы холодного водоснабжения, расположенной в теплом помещении – Вы наверняка замечали, что поверхность такой трубы всегда мокрая. Но влага-то не через металл проникает, а собирается из воздуха. Такие последствия влечет игнорирование утеплителя в конструкции стены – она будет не только холодной, но также мокрой.


И даже это еще не все! Еще одна проблема заключается в образовании влаги на внутренних слоях конструкции стены. Ведь при понижении температуры она станет замерзать, а уж какие последствия это повлечет, нетрудно догадаться.


Более подробную консультацию можно получить у наших специалистов в Вашем регионе

или позвонить в call-центр:
+7 923 775-13-44 / +7 923 775-13-22

Как рассчитать точку росы при утеплении стен, смещение точки росы. Строительство каркасных домов с расчетом точки росы в Москве

Процесс строительства – сложный и многоэтапный процесс, где нужно учитывать каждую деталь. Одна из таких – это точка росы, которая играет большую роль при установке системы утепления построек. Зная ее значение, можно определить нормальную температуру конденсации пара.

Чтобы в доме было сухо и тепло, важно правильно рассчитать точку росы при утеплении стен, иначе они будут намокать, появится конденсат.

 

Проблема в том, что проявляется это не сразу, а через некоторое время, когда переделать все проблематично. В большинстве случаев приходится теплоизоляцию и облицовку дома выполнять заново. В данной статье я расскажу, как рассчитать точку росы при утеплении стен правильно.

 

Давайте знакомиться.

Я более 10 лет занимается возведением каркасных домов в Московской области. А это мои завершенные проекты.

По всем вопросам строительства каркасных домов можно звонить лично мне, по телефону: +7(495) 241-00-59 — проконсультирую, рассчитаю, подскажу.

 

Определение термина «точка росы» и ее роль в строительном процессе

Точка соприкосновения температуры и влажности внутри помещения и снаружи постройки – это точка росы. Важно, чтобы в помещении это показатель превышал наружный, иначе скопление влаги и конденсата не избежать.

Любые перегородки, выходящие наружу здания – это граница с внешней природной средой, где другая температура и влажность. В точке росы всегда будет скапливаться влага.

 

На ее месторасположение влияет:

  • Характерные особенности используемых материалов для строительства.
  • Качество и количество слоев утеплителя.

Точка росы в утеплителе может перемещаться, и это нужно учитывать. Чаще всего это происходит, когда снаружи резко холодает, а внутри температура остается неизменной.

 

Важно!

Чтобы защитить стены изнутри, точка росы должна всегда располагаться снаружи дома. Это препятствует образованию плесени, грибка и т.п.

 

 

 

Мои фото отчеты о построенных домах

Посмотрите, как я со своей бригадой возводим каркасные дома в подробных фоторепортажах

Мы не делаем секретов, показываем вам весь процесс строительства каркасного дома по шагам. 

 

Расчеты

При расчетах точки росы в стене с утеплителем я учитываю:

  • климат региона;
  • направление и мощность ветра;
  • толщину стен;
  • используемые стройматериалы для ее возведения.

Обычно я сам не высчитываю это значение, для этого есть специальная таблица готовых примерных значений. В своей работе я не использую интернет программы, они могут не все учесть, и выдадут ложное значение.

Для определения показателя по таблице, необходимо знать температуру и влажность в помещении. В поле их соединения и будет точка росы. Для определения данных показателей использую термометр, бесконтактный градусник и гигрометр. Далее проделываю следующие действия:

  • Отмеряю от пола 60 см, на этой высоте определяю температуру.
  • Так же измеряю влажность.
  • Соотношу числа в таблице, и определяю точку росы.
  • Затем беру бесконтактный градусник, и на высоте 60 см на любой поверхности помещения измеряю температуру.
  • Полученные значения сравниваю. Если есть отклонение более 4 градусов, значит, термоизоляция должна проводиться опытным специалистом.

 

Важно!

Если в таблице нет нужного промежутка чисел, берется средний показатель.

 

Как практически определить место конденсации

Место конденсации зависит от расположения утеплителя (внутри или снаружи).

 

В неутепленном доме

В таких постройках большая вероятность образования конденсата на стенах внутри помещения. Причиной тому отсутствие утепления, которое задерживает теплый воздух внутри, и не дает ему выветриться. Расположение точки росы в них зависит от погоды снаружи.

При незначительных колебаниях температуры, конденсат образуется на наружной стене, внутри помещения будет комфортно. При значительном похолодании, возможно смещение точки росы при утеплении стен внутрь. Это приводит к образованию конденсата и намоканию стен внутри помещения.

 

При наружном утеплении

Стены снаружи должны утепляться качественным, прочным материалом, чтобы избежать их намокания. Если все сделать правильно, то точка росы расположится внутри утеплителя.

В ином случае, либо при недостаточной толщине тепломатериала, будут увеличиваться теплопотери, восполнить которые сложно.

 

 

Важно!

При сильном морозе внутри стен начнет скапливаться конденсат, что приведет к намоканию.

 

 

При внутреннем утеплении

В процессе строительства я редко использую внутреннее утепление, т.к. точка росы располагается посредине между утеплителем и стеной. Это плохой вариант, если температура резко снизиться, а влажность – повысится, в месте стыка появится влага и конденсат.

В результате начнет разрушаться теплоизоляция и утепленная поверхность. Такой вариант возможен, если система отопления способна поддерживать нужный уровень температуры во всем доме.

Бывали случаи, когда теплоизоляция проводилась без учета погодных условий конкретного региона. Тут и точку росы определить сложно, и температура и влажность внутри стены постоянно колеблется. Устранить такие проблемы очень сложно, обычно для этого приходится повторно утеплять стены.

 

Посетите любой из моих объектов как готовый так и строящийся

Позвоните и я вам покажу любой из моих построенных домов и все детально расскажу.

 

Где должна находиться точка росы

Расположение точки росы высчитано верно, если при похолодании она продолжает располагаться в утеплителе и не переходит на стену. Под похолоданием здесь понимается максимальное снижение температуры на несколько дней, недель, которое наступает периодически. В таком случае точка росы может сместиться в стену.

Если утеплитель выполнен из прочных материалов, то такие показатели нестрашны. Но, если он произведен из пористых материалов, типа минеральной ваты, появление точки росы в стене должно быть коротким. Иначе неизбежно намокание стены и скопление конденсата.

Чтобы этого избежать, я кладу в два раза больше утеплителя, и обязательно пароизоляцию, она выведет лишнюю влагу.

 

Ваша выгода при обращении ко мне

строю сам — 100% гарантирую качество

Все работы выполняю лично, у меня своя бригада

17 лет опыта

По началу занимался кровлями, но уже более 12 лет строю каркасные дома

Стройматериалы без наценки

все материалы вам привезу по закупочной цене (сравните мои сметы)

99% довольных заказчиков
которые рекомендуют меня друзьям

за 17 лет был всего 1 гарантийный случай (исправил в течении 2 дней) Можете смело искать отзывы обо мне в интернете по названию сайта или по Степанов Михаил

 

Что будет, если неверно выбрать точку?

Если воздух из теплого помещения попадает в более низкую температуру, то образуется конденсат. Именно он приводит к появлению влаги на стене, из-за чего образуется плесень, грибок и пр. Все это негативно сказывается на здоровье человека, он дышит выделениями от вредных микроорганизмов, что может стать причиной астмы и других заболеваний.

Это не единственное негативное последствие образования конденсата, намокшие стены со временем разрушаются. Поэтому очень важно правильно определить точку росы, а также:

  • Выбрать подходящий материал для строительства и термоизоляции.
  • Тип отопительной и вентиляционной системы.
  • Правильно подобрать технологию утепления.

Я предпочитаю монтировать теплоизоляцию снаружи постройки. Лучше выбрать пеноплекс, пенопласт или керамзит. Если выбор пал на минеральную вату, необходимо обеспечить надежную и прочную пароизоляцию и гидроизоляцию, которые не дадут влаге задерживаться в утеплителе.

 

Как построена моя работа

Шаг 1.
Ваше обращение

Я вам детально рассказываю все тонкости ( отвечаю на все вопросы, помогу сделать правильный выбор и рассеять все сомнения)

Лучше что бы у вас было четкое понимание чего вы хотите, если его нет, я вам помогаю с проектированием дома

Шаг 3.
Стоимость

Подробная смета (пример сметы ссылка) на материалы и на работы. Оплачиваете все по факту выполнения ( никаких предоплат)

Шаг 4.
Строительство

Строим дом, проводим коммуникации и отделку, учитываем все ваши правки в процессе и сдаем готовый дом

 

Что делать, чтобы вывести точку росы из дома наружу?

Часто встречаются случаи, когда неправильно подсчитана точка росы, и со временем стены начинают сыреть, покрываться плесенью. В таком случае есть два решения проблемы:

  • Улучшить теплоизоляцию помещения, которая уменьшит влажность.
  • Уменьшить разницу показателей температуры покрытий, т.е. провести внешнюю теплоизоляцию.

В любом случае, необходимо поработать с теплоизоляцией. Существует два способа утепления стен:

Внутреннее:

  • точка росы между стеной и утеплителем приводит к образованию конденсата, в результате чего несущая стена промерзает и покрывается плесенью и грибком.

Внешнее:

  • в данном случае точка росы находится в утеплителе, в результате тепло лучше сохраняется, стена постоянно сухая и теплая. Обеспечивается надежная звукоизоляция.

Почему дополнительное утепление лучше проводить снаружи? Во-первых, это удобно, во-вторых – температура окружающей среды и утеплителя выровняется. Кривая снижения температуры станет медленно снижаться, и точка росы сдвинется к краю теплоизоляции.

Чем толще покрытие, тем больше вероятность смещения точки за пределы стенки дома. Таким образом, утепление снаружи делает дома долговечными и снижает расходы по теплоснабжению.

Правильное определение точки росы способно продлить срок эксплуатации постройки.

Правильное определение точки росы способно продлить срок эксплуатации постройки. Даже при незначительных ухудшениях погодных условий можно избежать увлажнения стены. Если со временем в доме появился конденсат, стены стали намокать, появилась плесень, значит, необходимо установить дополнительный слой теплоизоляции, который выведет точку росы наружу.

Если улучшить теплоизоляцию невозможно, следует воспользоваться дополнительным обогревом помещения изнутри. Это поможет сместить точку конденсации наружу.

 

Планируете строительство каркасного дома? Звоните +7(495)241-00-59

 

мой опыт — ваши сэкономленные деньги и нервы.

Я консультирую всех кто ко мне обращается, даже если вы потом уйдете строится к другой бригаде. 
Задавайте вопросы, не стесняйтесь, я всем отвечаю —  это бесплатно 

+7(495) 241-00-59Я доступен для звонков 7/24 — буду рад вам помочь, обращайтесь!

Как спрогнозировать точку росы и не допустить намокания конструкций и утеплителя

Положение точки росы

То место, где снижается влажность воздуха за счет выпадения влаги на поверхность в виде капель конденсата, одновременно физическое явление с непостоянной величиной значения, которая измеряется в градусах, это и есть Точка росы. Если рассчитать значение точки росы для конкретного помещения, с учетом климатических особенностей, и нескольких параметров: относительной влажности, давления, значения температур снаружи и внутри, то можно рассчитать, где влага выпадет на точку поверхности имеющую температуру, ниже значения точки росы. И где эта точка будет находиться (ее положение) зависит от толщины и материала основных конструкций, от толщины всех слоев формирующих пирог стены, от утеплителя.

Там, где теплый воздух столкнется с поверхностью, имеющей температуру ниже значения точки росы, происходит намокание поверхности. Преобразованная в конденсат влага из воздуха несет губительные последствия для конструкций. В идеале она должна задерживаться в утеплителе, а затем выводиться. Если намокают основные конструкции, то неизбежна плесень, разрушения. Грибковые споры непрерывно увеличивают колонии и пагубно влияют на здоровье обитателей дома. Длительное намокание утеплителя ведет к снижению заявленных свойств – он просто теряет теплоизоляционные свойства.

 

 

 

Факторы, влияющие на значение точки росы

Большую роль играет система вентиляции, отопления, формирующие оптимальный микроклимат, с нормированными показателями влажности для жилых помещений. Чем выше влажность воздуха, тем выше и значение точки росы. Наглядно это можно представить так: влажность помещения 60%, температура 20 градусов – конденсат выпадет на поверхность, имеющую менее 12 градусов тепла. Но, если при подобной температуре влажность помещения будет 40%, то на поверхности выше шести градусов влага не выпадет. Если капля росы будет находиться рядом с вентиляционным слоем или наружной средой, то последствия этого явления не повлияют на эксплуатационные свойства здания.

Утепление стен внутри конструкций

Выбирая целлюлозный утеплитель Эковата, и утепляя им деревянные конструкции, можно избежать конфликта материалов, поскольку волокнистая структура дерева и аналогичная эковаты, будут равномерно «дышать», регулируя влажность воздуха естественным путем – втягивая влагу и отдавая ее в одном алгоритме. В таком тандеме не будет резкой границы температур, а значить и предпосылок намокания конструкций. Для каркасного дома, наполнение стен эковатой по ширине стоек влажно-клеевым методом или путем вдувания, под давлением вспушенной эковаты в полости — то есть утепление внутреннего слоя, это надежная защита деревянных конструкций от намокания, провоцированного точкой росы. К сожалению, такого эффекта трудно добиться с утеплителями, не впитывающими влагу – ППУ, ППС, или не способными ее выводить. Минвата, обладая прекрасными заявленными свойствами, теряет их в процессе намокания, и высушить ее довольно сложно.

Еще один момент сводит на нет утепление полостей рулонными и листовыми утеплителями: наличие швов. Даже супер качественная укладка не дает гарантии, что в стыках не будет мостков холода – щелей, доставляющих холодный воздух к теплым внутренним поверхностям или теплый и влажный к наружным. Вот там то и может появиться незапланированная точка росы, сводящая на нет все усилия по утеплению.

 

 

 

Утепление стены изнутри

Утепляя стены изнутри, необходимо быть уверенным в том, что точка росы будет находиться в толще стены. Визуально это определяется просто – если стена в холодный период года не мокнет, то точка росы не выходит внутрь помещения и дополнительное утепление не вызовет образование сырости под утеплителем и его намокания. Но поскольку мы, утепляя стену, закрываем ей прогрев от комнатного тепла, в периоды похолодания, этот процесс может сместиться на внутреннюю поверхность основной конструкции и сырость с плесенью станут неизбежны. Нет одинаковых ситуаций при определении места выбора утепления стены. Учитывается множество факторов:

  • Климатические условия;
  • режим эксплуатации;
  • системы обогрева и вентиляции помещения;
  • толщина стен, качество их материала, возведения;
  • влажность и температура внутри и снаружи;
  • степень утепления пола, крыши и др.

Но опять же, если утеплитель способен забирать влагу с поверхности и отдавать ее (сохнуть самостоятельно), а такими свойствами обладают натуральные утеплители с волокнистой структурой, то многие моменты нивелируются. Компания Теплосервис СПб проводит утепление Эковатой, как внутренних поверхностей, так и полых конструкций внутри стен. Все контрольные вскрытия показали, что в случае подобного утепления, в доме отсутствует сырость, плесень. Комфортный микроклимат поддерживается без дополнительных систем вентиляции.

Наружное утепление

Положение точки росы в утеплителе снаружи можно прогнозировать лишь в том случае, если толщина утепления будет соответствовать теплотехническому расчету. Меньший слой может принести больше вреда, чем тепла. Точка росы может располагаться в середине стены и сдвигаться до внутренних поверхностей при резких похолоданиях. Стена изнутри будет мокнуть. Но стоит повториться – нет одинаковых ситуаций, выбор утеплителя, методов утепления, необходимо делать с учетом всех особенностей проекта, планировки, конструкций, климата, режима эксплуатации.

Есть дополнительные строительные нюансы при утеплении, это вентиляционные зазоры, дополнительная пароизоляция, ветрозащита, не стоит забывать и о них, приступая к утеплению дома. Остановив свой выбор на натуральном целлюлозном утеплителе Эковата, Вы можете получить любые бесплатные консультации от специалистов компании Теплосервис по телефону 8 (812) 9999812. Мы выполним утепление любой сложности на любом этапе строительства, ремонта и эксплуатации. Теплосервис работает с сертифицированным утеплителем на целлюлозной основе.

 

 

 

Где находится точка росы, и как утеплять стены

Точка росы (ТР) — это температура, при которой водяной пар конденсируется и превращается в воду. При этом в воздухе образуется туман, а на холодных поверхностях выпадает конденсат (роса). Точка росы зависит в первую очередь от влажности воздуха. Влиянием атмосферного давления на ТР при дальнейшем рассмотрении будем пренебрегать.

На примере посмотрим, как изменится точка росы в зависимости от влажности внутри помещения. Примем, что температура внутри помещения стабильна и составляет +20 град. С, а влажность будет меняться от 40% до 100%.

Тогда температура поверхности на которой образуется конденсат будет иметь следующие значения (в зависимости от влажности):
40% — +6 град С и ниже

60% — +12 град С и ниже

80% — +16,5 град С и ниже

100% — +20 град С и ниже

Как видим, при обычных условиях внутри помещения (температура 20 град С и при влажность 80%), — водяной пар сконденсируется на поверхности, которая будет иметь температуру 16,5 град С и ниже.

В зависимости от температуры внутри помещения, температуры снаружи, теплоизоляционных свойств стены здания, точка росы может находиться или на внутренней поверхности стены, или на наружной, или внутри стены. Т.е. где то в стене будет такая температура, при которой водяные пары будут конденсироваться.

При изменении температур и влажности воздуха как внутри так и снаружи помещения, точка росы будет смещаться по толщине стены.

И чем ближе ТР к внутренней поверхности, тем влажнее будет стена изнутри здания. Не редки варианты, когда ТР в холодное время смещается совсем близко к внутренней поверхности или же находится прямо на ней. При таких обстоятельствах на мокрой стене за 2 – 3 года образуются плесень и грибок, внутрення отделка разрушается, в помещении будет повышенная влажность и не благоприятные для жизни условия.

Утепляя здание, мы меняем и место нахождения точки росы по толщине стены, так как температура стены при утеплении изменится.

Графики изменения температуры по толщине стены наглядно показывают положение точки росы в зависимости от применяемого утепления. Указана примерная ситуация. Точное положение точки росы, конечно же будет определяться только расчетом в зависимости от толщины и теплопроводности материалов стены и утеплителя, от температуры снаружи и внутри здания, от влажности воздуха снаружи и внутри, и от других факторов имеющих меньшее значение.

Обычная стена без утепления. С повышением влажности воздуха и с понижением наружной температуры, точка росы смещается ближе к внутренней поверхности стен. Для «холодных» стен не редки случаи нахождения ТР внутри помещения.

Стена с недостаточным утеплением. Точка росы смещается на стену из утеплителя при похолодании.

Стена с нормальным утеплением. Точка росы находится в утеплителе, даже в очень холодное время.

Внутреннее утепление. Трудно добиться что бы точка росы не находилась внутри помещения. На стенах образуется конденсат.

Специалисты сходятся во мнении, что здания должны утепляться только снаружи. При этом толщина и качество утеплителя должны соответствовать ГОСТу. Точка росы при этом всегда должна оставаться внутри слоя утепления.

Утепление здания изнутри считается даже вредным. Сами стены при этом становятся более холодными, так как изолируются от теплого воздуха слоем утеплителя. Практически невозможно сделать так, что бы стены и утеплитель не мокрели. Множество людей ищут ответ на вопрос: «Можно ли утеплять стены изнутри?». Ответ практически однозначный – нет. Это вредно для здания, но главное, — вредно для здоровья людей живущих в нем. Потому что стены будут намокать и на них под слоем утеплителя будут разростаться плесень и грибок. Конечно возможны варианты, когда такой вид утепления в общем то применим. Это можно сделать при достаточном тепловом сопротивлении самой стены, при весьма теплом климате, при отличной вентиляции и отоплении внутри здания, но… стоит ли тогда вообще рисковать и утеплять внутреннюю поверхность стены?

Точка росы в строительстве: понятие и определение

Здравствуйте, дорогие читатели! Читая об утеплении и теплоизоляционных материалах, производя расчёты необходимой толщины теплоизолятора, вы наверняка сталкивались с выражением точка росы в стене или точка образования конденсата.

Это важный физический параметр, от которого зависят расчёты утепления. Что такое точка росы? Как рассчитать точку росы в строительстве? Как применить полученные данные? Давайте разбираться.

Что это и зачем её необходимо знать?

Итак, точка росы определение ее такое – это такой показатель температуры, при которой находящийся в воздухе пар превращается в жидкость (росу). Этот показатель всегда зависит от влажности окружающей среды: чем выше влажность, тем выше точка росы, и наоборот, чем ниже влажность воздуха, тем показатель росы ниже температуры окружающего воздуха. При условии, что влажность равна 100% точка росы будут равна температуре окружающей среды.

Для «чайников» для понимания того, что собой представляет данное явление достаточно помнить, что чаще всего температура воздуха снаружи дома у нас в стране ниже, чем внутри, поэтому тёплые внутренние воздушные потоки стремятся проникнуть наружу. Воздух, проходя от внутренней стороны к наружной, охлаждается и превращается в конденсат. Чтобы это произошло в нужном месте необходимо знать значение точки росы.

Если такой процесс происходит в неправильном месте, то стены дома сыреют, на них появляется плесень. Дом буквально становится непригодным для проживания: ухудшается теплопроводность, стенки промерзают, разрушаются.

Точное определение месторасположения места в котором образуется конденсат в стене предотвратит эти неприятности, обеспечив комфортный микроклимат.

Расположение: отчего оно зависит?

Положение данного показателя зависит от следующих факторов:

  • толщины стенки, всех используемых для её возведения и отделки материалов;
  • температурного показателя внутри и снаружи дома;
  • влажности внутри и снаружи помещения.

Расположение точка росы, при утеплении утеплителем, может располагаться в различных вариациях. Рассмотрим их, и вы наглядно поймёте, почему так важно использовать правильный теплоизолятор и правильной толщины.

Вариант 1. Если теплоизолятор рассчитан правильно, то точка росы будет находиться внутри теплоизолятора:

Это правильное расположение расчётного показателя. Наружная и внутренняя стены остаются при этом сухими.

Вариант 2.В случае если слой изолятор взят меньше, чем требовалось, то возможны три варианта месторасположения точки росы:

Во всех случаях искомый показатель будет находиться внутри стены, где должна быть: в первом случае – ближе к утеплителю, во втором – ближе к внутренней стороне, в третьем – на поверхности внутренней стены.

Как видите, использование меньшего слоя утеплителя, чем необходимо, приводит к очень негативным для дома последствиям.

Методы определения

Точка росы рассчитывают ещё на стадии проектирования. Проектировщики пользуются специальной формулой, однако она достаточно сложная, требует специальных знаний и информации по климату региона, а также изыскательских сведений. Вот она наведена ниже

Где у нас:

а – это постоянная и она равна 17, 27;

Тр – точка росы, которую мы ищем;

b – тоже постоянная, которая равна 237,7 °C;

λ(Т,RH) – это коэффициент, его можно рассчитать с помощью этой формулы:

Где:

Т – температура воздуха изнутри помещений °C;

RH – влажность, измеряется она в долях объема, ее пределы от 0,01 до 1;

ln – натуральный логарифм.

Более легкий способ расчета может быть выполненный этим вариантом, а именно для определения точки росы мы рекомендуем использовать специально созданные таблицы, где вам будет необходимо знать всего два параметра: относительную влажность воздуха и его температуру.

Так при средней климатической влажности воздуха в регионе 70% и при температуре +20, искомый параметр будет составлять 15,4 градусов, т. е. именно при этой температуре содержащийся в воздухе пар начнёт превращаться в конденсат.

Как использовать полученный результат?

Как вы уже поняли, правильным утеплением считается такое утепление (сейчас речь идёт только о наружном утеплении фасада), при котором точка росы располагается в середине утеплителя. Этот параметр зависит от множества факторов: например теплоизоляционные характеристики изоляционного материала уменьшаются при возрастании его влажности, а значит, в роли теплоизолятора должен выступать материал, не пропускающий влагу, т. е. имеющий минимальное влагопоглащение.

Как вычислить требуемую толщину утеплителя, чтобы точка росы оказалась внутри него? Здесь важны характеристики утеплителя и стен: чем плотнее теплоизолятор, тем быстрее он передаёт холод. Исходя из этого, можно сделать вывод, что лучшими теплоизоляционными свойствами будет обладать пористый материал (для утепления очень хорошо подходит наш материал), а стена из плотного бетона будет нуждаться в большем утеплении, чем стена из ячеистого шлакоблока.

Паропроницаемость и точка росы

На стадии проектирования дома очень большое значение имеет учет паропроницаемости строительных материалов. Паропроницаемость это объем водяных паров, которые может пропустить материал за единицу времени.

Все материалы, с которых мы строи дома (кирпич, газобетонные и пенобетонные блоки, дерево) имеют поры, сквозь которые проходит воздух с водяной парой. Учитывая это необходимо следить за выбором материалов, которые вы будете в дальнейшем использовать для утепления и отделки дома. Надо, чтобы все они были паропроницаемые. В выборе вам помогут такие принципы:

  • паропроницаемость стен должна увеличивается с внутренней стороны наружу;
  • влага должна спокойно выходить и не должна конденсироваться;
  • теплопроводность всех материалов, с которых состоит стена должна увеличиваться по направлению к внешней стороне.

Как рассчитать толщину утеплителя?

Требуемая толщина утеплителя рассчитывается с учётом рассматриваемого параметра тремя способами:

При помощи специальных сводных таблиц, причём они будут отличаться для каждого региона.
Используя расчётную формулу, включающую множество сложных параметров.
При помощи специального калькулятора, который предлагают на своих сайтах многие производители теплоизоляционных материалов.
В окончании хочется напомнить, что температуру образования росы (ТР) целесообразно рассчитывать не только относительно утеплителя, но и слоя декоративной отделки.

Очень хорошие видео о точке росы, там вы найдете ответы на все вопросы по этой теме.

Точка росы в стене – что делать?

Построил стены, завел дом под крышу и поставил окна – готова коробка. Именно на этом этапе заканчивается «конструктивный» период стройки и начинается установка оборудования, утепление стен дома и дальнейшая его подготовка под чистовую отделку.

И именно на этом этапе важно правильно смонтировать утеплитель, да и весь пирог утепления на стенах дома, чтобы в дальнейшем не получить себе такую головную боль, как точка росы в стене со стороны жилого помещения.

Что за зверь такой – точка росы и почему плоха именно точка росы в стене, как это выглядит на практике?

Для начала немного теории, а затем практически примеры из собственного опыта, который я получил, приобретая коробку дома с уже установленным слоем утеплителя.

Температура точки росы

Точка росы имеет обыкновение двигаться. Зависит этот момент от двух показателей – температуры и влажности.

Каждый из них также делится пополам – на температуру в помещении и на улице, на влажность в помещении и на улице.

При всех расчетах и формулах, которые используются для того, чтобы рассчитать точку росы, предполагается, что влага будет конденсироваться из пара при движении изнутри наружу. Именно такая ситуация наблюдается зимой, когда температура и влажность в помещении выше, чем температура и влажность на улице. Температура точки росы будет расчетной при расчетных показателях для наружных и внутренних условий.

Летом, когда влажность и температура на улице обыкновенно выше, чем влажность и температура в помещении, точка росы не имеет такого значения. Почему? Потому что разница температур невысока и оба показателя температуры, уличный и домовой, находятся в положительных значениях.

А еще потому, что даже если точка росы в стене могла бы образоваться при плюсовых значениях обеих температур, сильного влияния на комфорт проживания в доме это бы не оказало.

Другое дело зимой. Влага, конденсируемая из пара, при низких температурах попадает в утеплитель и стену, и там замерзает. Для утеплителя намокание чревато либо полной потерей теплоизоляционных свойств (базальтовая вата), либо разрушением при замерзании воды (пенопласт). Для стены все то же самое, особенно для газобетонных и газосиликатных блоков.

Сам лично наблюдал печальную картину разрушения стены блочного дома в зимний период из-за неправильно сделанного утепления. К весне в стене из газосиликата толщиной 400 миллиметров были почти сквозные дыры.

Как рассчитать точку росы

Для расчета точки росы используется таблица значений конденсации водяного пара в зависимости от показателей влажности и температуры. Берется значение наружной и внутренней температуры и значение наружной и внутренней влажности. Получается температура точки росы, при которой будет происходить выпадение воды из водяного пара (образование росы).

Точка росы ТАБЛИЦА:

 

Что нам дает эта температура? Очень многое. Мы в состоянии рассчитать, где будет конденсироваться пар в пироге утепления, то есть где будет точка росы в стене – в утеплителе, в несущей стене или на внутренней поверхности несущей стены – прямо в комнате.

Естественно, что самый правильный вариант – это точка росы в утеплителе. В этом случае не будет никаких негативных моментов для внутренних помещений. Чтобы не было также негативных моментов для утеплителя, стоит на этапе планирования правильно подбирать тип утеплителя для стен.

Менее приемлемый вариант – это точка росы в стене дома, которая является несущей. Здесь негативные моменты для внутренних помещений будут зависеть от материала стены. Получается такая ситуация тогда, когда утеплитель смонтирован неправильно или неправильно выбрана толщина утеплителя.

Здесь хорошо видно, как будет сдвигаться точка росы в стене дома.

Самый неприемлемый вариант – это точка росы внутри помещения, на внутренней поверхности несущей стены. Обычно это случается тогда, когда дом совсем не утеплен или утеплен неправильно – изнутри.

Точка росы в доме – что делать?

Итак, обещанный пример из собственного опыта. Я приобрел коробку кирпичного дома, которая была утеплена изнутри пенопластом. О чем думали те люди, которые строили эту коробку, остается только гадать. Благодаря такому утеплению получилась точка росы в доме, на внутренней поверхности несущих стен, между кирпичом и утеплителем.

В чем выразилась точка росы в доме, в каких негативных моментах?

Их было два. Во-первых, кирпичная стена изнутри была всегда сырая в небольшие плюсовые и минусовые температуры. В комнатах стоял затхлый запах, при вскрытии под всем пенопластом были большие очаги плесени.

Во-вторых, в минусовые температуры было невозможно нормально обогреть этот дом, кирпичная кладка была исключена из теплового контура дома, благодаря тому, что была отсечена от теплого воздуха помещений пенопластом.

Что я сделал, чтобы победить точку росы в доме?

Во-первых, был демонтирован весь пенопласт с внутренних поверхностей несущих стен.

Во-вторых, утеплитель был смонтирован снаружи и был оштукатурен по методике мокрого фасада.

И, в-третьих, вместо прежнего внутреннего утепления в 50 миллиметров, было установлено наружное утепление в 150 миллиметров.

При правильном утеплении — точка росы снаружи, в доме — тепло и сухо.

Что стало? Стало тепло, сухо и комфортно.

ФИНАЛЬНАЯ ЗАМЕТКА. Не делайте воздушную прослойку между несущей стеной и воздухом комнаты. Часто обшивают стены изнутри ГКЛ – это дешевле и быстрее, чем штукатурить. Однако в воздушном зазоре между ГКЛ и кирпичом образуются микросквозняки, которые препятствуют теплопередаче и прогреву внутренней части кирпичной кладки.

Я свои кирпичные стены изнутри заштукатурил самой обычной штукатурной смесью. Сверху теперь можно красить или клеить обои. Толщина обоев такова, что ими, как теплоизолятором, можно пренебречь.

 

Точка росы — СК Авторитет

При строительстве малоэтажных зданий основным этапом является расчет теплотехнических характеристик, которые напрямую влияют на эффективность его эксплуатации. Сегодня застойщики при самостоятельном возведении домов допускают ошибки, которые приводят к негативным последствиям. При неправильном подборе материалов для стен и утеплителя существует риск смещения точки росы к внутренней поверхности стен. Это повлечет за собой большие финансовые затраты на исправление ошибок.

Точка росы характеризуется как показатель температуры воздуха, при которой он охлаждается до такого состояния, когда содержащийся в нем пар доходит до состояния критического насыщения и преобразуется во влагу. В строительных конструкциях это определение характеризует возникновение конденсата на конструктивных элементах и зависит от температуры внутри и снаружи здания, а также показателей влажности.

Расположение точки росы при различных видах утепления

Появление конденсата на строительных конструкциях зависит от нескольких моментов, которые учитываются профессионалами строительной компании «Авторитет» на стадии проектирования:

  • Температура на улице и в помещении во все сезонные периоды;
  • Влажности воздуха в доме и за его пределами;
  • Толщина стены, утеплителя.

В зависимости от типа работ по теплоизоляции дома точка росы фиксируется в различных положениях. Мы рассмотрим три основных варианта стен частного дома, которые утеплены:

  • Снаружи;
  • Внутри;
  • Не утеплены вообще.

Стены без утепления

К данному варианту присуще два основных исхода. Они зависят от факторов, перечисленных выше, и возникают при изменениях температурного режима на улице:

  • На расстоянии 1/4 стены от наружной поверхности. Внутренние стены здания полностью сухие;
  • На расстоянии 1/4 стены от внутренней поверхности. Встречается при небольшой толщине стен и повышенной влажности внутри дома. При резком изменении температурного режима возможно смещение до внутренней поверхности. Стены замокают и могут находиться в таком положении всю зиму.

Утепление снаружи

При проектировании и строительстве зданий наша компания проводит все необходимые теплотехнические расчеты, которые позволяют подобрать утеплитель необходимой толщины. В данном случае положение точки росы будет фиксироваться в утеплителе, что полностью исключает намокание стен и они будут оставаться сухими при любых погодных условиях.

Если строительство будет выполняться самостоятельно или с привлечением малоизвестных компаний, в том числе и без проекта, то есть риск подбора неправильной толщины теплоизоляционного материала. Если его недостаточно, то возможны все два варианты, которые свойственны для не утепленных стен.

Стены, утепленные изнутри

В данном случае технические расчеты одинаково важны. При этом внутреннее утепление выполняется с целью огораживания домашнего тепла от наружного воздуха. Если пренебречь проектированием или выполнять работы на неквалифицированном уровне положение точки росы фиксируется на внутренней стороне стены или в самом утеплителе. В обоих вариантах стена под утеплением будет мокрой. Однако, во втором случае намокать будет и сам теплоизоляционный материал, включая отделочные материалы. Образование влаги на стенах в зимний период является недопустимым, так как при больших морозах она замерзает и строительные материалы уже не выполняются свои функции по сохранению тепла.

При правильном подборе типа утеплителя, его толщины и метода утепления, расположение точки росы будет фиксироваться на 1/4 от внутренней или внешней поверхности стены, что является допустимым и безопасным.

Последствия неправильного утепления

Помимо потери тепла в помещениях, происходят и другие негативные процессы;

  • Увеличенные расходы на электроэнергию, газ, твердое топливо;
  • Образование влаги на отделке, ее повреждение;
  • Создание комфортной обстановки для происхождения плесени, грибка.

Чтобы устранить последствия потребуется не только заказать профессиональное проектирование утепления, но и купить новый утеплитель, при необходимости заменить старый, обработать стены от паразитов, затратиться на восстановление отделки. Обратите внимание, что влажность оказывает влияние и на конструктивные элементы, которые теряют свои несущие способности. Особенно это касается газосиликата и других пористых материалов.

Чтобы исключить негативные моменты, обратитесь для строительства дома в СК «Авторитет».

Другие новости и статьи

14 фев 2018

Зачем выполнять звукоизоляцию частного дома?

Несмотря на то, что в собственном жилье отсутствуют соседи за стенкой или на этажах, звукоизоляция частного дома становится важным этапом при проектировании и строительстве. Для гарантии комфортного проживания нужно максимально исключить ударный шум, вибрацию и посторонние звуки от работы техники или других источников в других комнатах.

статья

15 мар 2018

Как не ошибиться с выбором проекта коттеджа для большой семьи?

Любой загородный дом, который большая семья планирует построить для постоянного проживания, требует тщательного проектирования. Такой коттедж располагается в месте с удобными подъездными путями, развитой инфраструктурой и наличием необходимых для жизни коммуникаций.

статья

16 окт 2018

Как правильно выбрать подрядчика на монтаж кровли?

Единственно верный взвешенный подход к возведению дома – строительство под ключ на основе готового, проработанного до мелочей проекта. Нанимать на каждый отдельный этап новую бригаду – не самое удачное решение.

статья

Контроль конденсации в холодную погоду с помощью теплоизоляции

Конденсация в холодную погоду в первую очередь является результатом утечки наружного воздуха. Диффузия обычно не перемещает достаточное количество водяного пара достаточно быстро, чтобы вызвать проблему. Чтобы предотвратить повреждение конденсации внутри стен и крыш ограждения, используются воздушные барьеры для остановки воздушного потока и пароизоляционные слои (замедлители диффузии пара или барьеры) для ограничения диффузионного потока.

Воздух, выходящий наружу через стену шкафа в холодную погоду, будет контактировать с тыльной стороной оболочки в каркасных стенах.Этот конденсат может накапливаться в виде инея в холодную погоду и впоследствии вызывать «протечки», когда иней тает и жидкая вода стекает вниз, или вызывать гниение, если влага не высыхает быстро после возвращения более теплой и солнечной погоды.

В стенах с достаточной внешней изоляцией температура точки росы внутреннего воздуха будет ниже температуры тыльной стороны обшивки: поэтому конденсация из-за утечки воздуха не может происходить в пространстве стойки. Если расчет показывает, что сборка защищена от конденсации в результате утечки воздуха (с использованием метода, описанного ниже), то диффузионная конденсация не может произойти, даже если внутри оболочки не обеспечивается полное паронепроницаемость (т.е.например, без пароизоляции или другого регулирующего слоя), и даже если оболочка является пароизоляционной (например, изоляция с фольгой).

Возникновение промежуточной конденсации само по себе обычно не является признаком дефекта конструкции: если утечка воздуха, конденсация происходит только в экстремальных условиях (например, 99% расчетных условий, перечисленных в Справочнике основ ASHRAE или других источниках), утечка воздуха в течение многих часов после этого редкого события стена фактически высохнет, когда температура оболочки поднимется выше внутренней точки росы.Следовательно, выбор условий для анализа очень важен. Хотя данные о температуре наружного воздуха легко доступны, даже стены, выходящие на север, будут подвергаться некоторому воздействию рассеянного солнечного излучения, которое будет нагревать облицовку (и, следовательно, стены) выше температуры наружного воздуха в течение многих часов холодных зимних месяцев.

Трудно выбрать расчетную температуру наружного воздуха, поскольку аналитик может выбрать любой уровень защиты от конденсации, от нулевого до полного.Для материалов с некоторой устойчивостью к влаге (например, внешняя гипсовая обшивка из стекломата достаточно устойчива к влаге) и / или с некоторой способностью безопасно хранить влагу (например, фанера и обшивка OSB), гораздо менее строгая конструкция более оправдан, чем для материалов без хранения (например, изоляция с фольгой) или с высокой чувствительностью к влаге (гипс с бумажной облицовкой). Поэтому требуется некоторое суждение. Средняя зимняя температура (средняя из трех самых холодных месяцев) считается достаточно безопасным значением (и легко доступна).Для систем с высокими эксплуатационными характеристиками (или стен, которые очень чувствительны к повреждению от влаги) можно выбрать более консервативное значение, например, самый холодный месяц, на 10 ° F / 6 ° C меньше среднемесячного значения или 9 ° C / 15 ° F выше проектной температуры 99%.

Внутренние условия в здании в холодную погоду являются критическими переменными для понимания риска конденсации и должны быть известны, если нужно делать прогнозы и расчеты. Температура в помещении часто находится в диапазоне 70 ° F / 21 ° C, но уровни относительной влажности и, следовательно, содержание влаги в воздухе могут значительно различаться.В большинстве офисов, школ и магазинов уровень вентиляции достаточно высок, чтобы относительная влажность в зимние месяцы составляла от 25 до 35%. В некоторых жилых помещениях образование внутренней влаги выше, а степень вентиляции наружным воздухом ниже, чем в коммерческих помещениях, и, следовательно, относительная влажность часто будет выше. В помещениях с особыми условиями, например в плавательных бассейнах, уровень внутренней температуры и относительной влажности будет выше (78 ° F / 25 ° C и 60% относительной влажности), что приведет к очень высокому уровню абсолютной влажности.

Влажность наружного воздуха всегда падает в очень холодных условиях, так как максимальное содержание влаги в воздухе падает. По мере того, как внешние условия становятся холоднее, внутренняя относительная влажность падает, поскольку внутренняя влажность разбавляется все более сухим наружным воздухом. Этот эффект обеспечивает некоторую защиту от конденсации, поскольку самая холодная неделя в году, вероятно, совпадает с одним из самых низких уровней внутренней влажности. 1

Внутренняя влажность обычно определяется комбинацией температуры и относительной влажности.Более прямые показатели — это абсолютная влажность или соотношение влажности, обычно выражаемое в граммах воды на кг сухого воздуха (или в зернах воды на фунт сухого воздуха). Однако с практической точки зрения наиболее полезной мерой является температура точки росы внутреннего воздуха.

Учитывая согласованный набор внутренних и внешних проектных условий, легко рассчитать уровень изоляции, необходимой за пределами пространства каркаса или обшивки для контроля конденсации утечки воздуха. Конденсации можно избежать, если температура на обратной стороне оболочки выше, чем температура точки росы внутреннего воздуха.Если предположить, что внутренняя отделка и внешняя облицовка имеют низкое термическое сопротивление (почти всегда разумное предположение), то температура обратной стороны оболочки может быть найдена по следующей формуле:

T задняя часть оболочки = T внутренняя — (T внутренняя -T внешний вид ) * R batt / R всего

Эта концепция графически показана на Рисунок 1 . Из этого анализа должно быть ясно, что любое количество изолированной оболочки на внешней стороне каркасных конструкций обеспечит лучшую защиту от конденсации утечки воздуха в холодную погоду, чем отсутствие внешней изоляции.При фиксированном R-значении внешней изоляции риск конденсации также снижается, так как R-значение внутренней изоляции падает. Таким образом, если в отсеке стоек вообще нет изоляции (уменьшение внутреннего значения R до значения внутренней отделки и только пустого пространства для стоек, примерно R-2), практически любой разумный уровень внешней изоляции R-значение обеспечивает полную защиту от конденсация и диффузия утечки воздуха в холодную погоду.


Рисунок 1:
Изоляционная оболочка, уменьшающая утечку воздуха и конденсацию

В таблице 1 указан уровень изоляции (оболочка плюс воздушное пространство и облицовка), который должен быть обеспечен за пределами пространства для стоек, заполненного воздухопроницаемой изоляцией (т.е.д., войлок или выдувная волокнистая изоляция) для предотвращения конденсации влаги в холодную погоду. Можно видеть, что при умеренных температурах и сухом внутреннем воздухе требуется небольшая внешняя изоляция для контроля конденсации, тогда как в музее, поддерживающем 50% -ную температуру в Фэрбенксе, Аляска или Йеллоунайфе, Северо-Западные территории, должна быть практически вся внешняя изоляция.

Более конкретно, рассмотрим дом в Торонто. Мы выберем среднюю зимнюю температуру в качестве критерия проектирования и относительную влажность в интерьере 35%.В декабре, январе и феврале температуры в Торонто составляют -1,9, -5,2 и -4,4 ° C соответственно, что приводит к средней температуре зимой в Торонто -3,8 ° C (25 ° F). Из таблицы можно считать, что внутренняя точка росы составляет примерно 5 ° C / 40 ° F, и, следовательно, несколько менее 37% общего значения теплоизоляции стены должно приходиться на внешнюю часть в виде изоляционной оболочки, воздушных зазоров. , и облицовка.

Ориентация на R-значение всего ограждения, равное 20, потребует 0,37 * 20 = от общего значения, или R-7.5 снаружи, чтобы избежать конденсации в случае утечки воздуха. Это оставляет R-12,5 внутри, который может состоять из обшивки R-12 и внутренней отделки. Внешняя облицовка и воздушное пространство добавляют некоторой R-ценности экстерьеру, но их можно консервативно игнорировать. Это решение, ватин R-12 между стойками 2×4 с внешней изоляционной оболочкой R-7,5, очень безопасно против конденсации утечки воздуха для этого примера в Торонто. Если бы целью был R-30, 0,37 * 30 = R-11 внешней оболочки и изоляция пространства стойки R-19 были бы одним из решений.Более подробные расчеты, включая сопротивление деревянной обшивки и воздушный зазор, а также правильная интерполяция результатов между температурой наружного воздуха от 0 до 5 ° C, показывают, что изоляционное значение R-5 обшивки поверх войлока R-12 также будет контролировать конденсацию.


Таблица 1:
Соотношение внешней и внутренней изоляции для контроля конденсации при утечке воздуха

Этот тип простого анализа можно проводить ежемесячно и строить графики для визуализации риска конденсации.Пример стены с деревянным каркасом для климата Чикаго показан на Рис. 2 .


Рисунок 2
: Ежемесячный анализ потенциала конденсации двух стен в климатических условиях Чикаго

Добавление большей воздухопроницаемой изоляции в отсек для стоек (например, если конструктивно требуется 6-дюймовая шпилька, исполнитель с благими намерениями может заполнить полость шпильки войлоком R-20), конечно, снизит защиту от конденсации — опасно в этом случае.Добавление значительно большей изоляции снаружи (например, переход от R-7,5 к R-15) значительно снизит риск. Независимо от конструкции стены, внешнего климата и влажности в помещении всегда будут сохраняться одни и те же тенденции: добавление теплоизоляции снаружи снижает риск конденсации, а добавление воздухопроницаемой изоляции к пространству стоек увеличивает риск конденсации.

Важно отметить, что значения R, используемые в анализе, являются средними значениями R для отсека стоек, так как конденсация будет происходить в самой холодной части оболочки, и это будет происходить между стойками.Следовательно, несмотря на то, что фактическое значение R для всей стены войлока R-13 между 3,5-дюймовыми стальными шпильками при 16-дюймовом остеклении. (Стойки 90 мм на расстоянии 400 мм) будет около R-5 из-за теплового моста на стойках, ватины будут эффективны в середине каждого отсека для стойки. Следовательно, конденсация, вызванная утечкой или диффузией воздуха, сначала начнется между шпильками, и в большинстве случаев конденсация никогда не произойдет на шпильках.

Учитывая результаты описанного метода анализа конденсации и знание того, что стальные шпильки с изолированными отсеками для стоек обеспечивают общие значения R стенок только от R-5 до R-7, обычно рекомендуется, чтобы размещаться на внешней стороне таких легких стальных ограждений.

Рассмотрим две конструкции стены с каркасом из стали, показанные на Рис. 3 в период холодной погоды. Применение изоляционной оболочки R-10 (RSI 1,76) (непрерывная изоляция любого типа) на внешней стороне каркаса приведет к тому, что температура оболочки будет выше 60 ° F (15 ° C) повсюду в пространстве стойки, в том числе на оболочке. , ночью, когда температура наружного воздуха опускается до -15 ° C (4 ° F). Следовательно, конденсация практически невозможна в пространстве стойки или на оболочке (обычно на одном из чувствительных к влаге компонентов в сборе).Это верно даже в случае утечки воздуха, поскольку температура всех поверхностей выше точки росы внутреннего воздуха. 2 Если изоляция R-19 (RSI3.5) размещается между каркасом, температура оболочки будет примерно 10 ° F (-12 ° C), что значительно ниже температуры, при которой может возникнуть конденсация. В последней конструкции используются идеальные воздушные барьеры (одно из решений — воздухонепроницаемая пена для распыления), позволяющая избежать конденсации в результате утечки воздуха. Если заполнение полости имеет высокую паропроницаемость (например, стекловолокно, минеральная вата или открытая ячейка, пена плотностью полфунта), также необходим пароизоляционный слой (класс II) для надежного управления диффузией пара.


Рисунок 3:
Изоляционная оболочка как мера контроля конденсации. Сплошная внешняя изоляция слева, изоляция каркаса справа. Красная линия отображает температуру через две сборки в ночь на 4 ° F (-15 ° C). Синяя линия показывает температуру обратной стороны оболочки.

Конструкция со всем контролем теплового потока в виде непрерывного слоя изоляции на внешней стороне может очень хорошо работать даже в случае утечки воздуха и не требует особой осторожности при выборе внутренних слоев для контроля паров.Следует также напомнить, что стена с только внешней изоляцией будет иметь общее значение R около R-12 (RSI2.1), тогда как стена с изоляцией полости каркаса будет иметь общее значение R от R-6 до Р-8 (RSI 1.1 — 1.4) (в зависимости от деталей пересечения перекрытия и стенового каркаса и типа облицовки).

Во многих ситуациях может рассматриваться гибрид внешней изоляционной оболочки и изоляции полости стойки. На рис. 4 показан график температуры для двух гибридных растворов при тех же условиях, которые рассматривались ранее.Установка изоляции R-12 (RSI2.1) в пространстве стоек улучшит тепловые характеристики стены примерно на R-6 (увеличение сборки до общего значения R более 16 / RSI2,8), но уменьшит температура оболочки до 35 ° F (2 ° C) в эту холодную ночь. Во многих коммерческих помещениях температура внутренней точки росы в холодную погоду опускается ниже 35 ° F (2 ° C), поэтому конденсация маловероятна, но отнюдь не невозможна. Если бы R-12 был добавлен в виде воздухонепроницаемой аэрозольной изоляции (например,грамм. SPF) воздух практически не попадал в оболочку и не было риска конденсации при утечке воздуха.

R-17 / RSI 3,0 Всего R-18 / RSI 3,2 Всего
Рисунок 4: Гибридный подход к изоляции — хотя и более рискованный, особенно в холодном климате и повышенной влажности в помещении, гибридные стены предлагают немного более высокое значение R и могут быть влагобезопасным во многих областях применения. Обратите внимание, что отношение значения внешней изоляции к значению R полости каркаса определяет риск конденсации в холодную погоду.

Если бы воздухопроницаемая изоляция R-19 (RSI3,5) была добавлена ​​в пространство для стойки, значение R сборки увеличилось бы примерно на R-7 по сравнению со сценарием с пустым пространством для стойки: то есть почти 2 / 3 изоляционной стоимости войлока R-19 все равно будет потеряно. Однако температура оболочки упадет ниже 30 ° F (-1 ° C), и риск конденсации будет выше. Относительно небольшое увеличение контроля теплового потока, обеспечиваемое изоляцией из войлока, достигается за счет значительного увеличения риска конденсации.

Те же решения, которые предотвращают конденсацию из-за утечки воздуха, также полностью устраняют конденсацию в холодную погоду из-за диффузии пара, даже если внешняя оболочка является идеальным пароизоляционным материалом (например, изоляционные плиты с фольгированной или пластиковой облицовкой). Если выбранные слои обшивки (включая структурную обшивку, водоотведение и изоляцию) в некоторой степени паропроницаемы (например, пенополистирол поверх строительной бумаги и фанеры), можно использовать меньшее значение R, и диффузионная конденсация все равно будет контролироваться (поскольку большая часть пар, который диффундирует или просачивается вместе с воздухом в отсек для стоек, будет безвредно проходить наружу путем диффузии).Если слои обшивки очень паропроницаемы (например, минеральная вата поверх ДВП или гипсовая обшивка, а также обшивка для дома), то за пределами отсека для стоек требуется очень небольшая изоляция. Однако, хотя эти проницаемые слои могут по существу устранить риски конденсации диффузионного пара с более низкими значениями R внешней оболочки, риск конденсации утечки воздуха не так сильно снижается: утечка воздуха может по-прежнему доставлять больше водяного пара к задней части оболочки, чем может быть. удаляется диффузией через оболочку, и, следовательно, конденсация все еще может происходить и накапливаться.

Для важных проектов или ситуаций, в которых команда разработчиков имеет небольшой исторический опыт, исследование с использованием широко доступных компьютерных моделей, таких как WUFI-ORNL, будет разумным при наличии необходимого времени и навыков.


Сноски

  1. Корреляция уровней влажности в помещении и температуры наружного воздуха была бы гораздо более прямой, если бы не способность удерживать влагу тканью здания и изменяющиеся скорости производства влаги внутри здания.Резкие резкие перепады температуры наружного воздуха с большей вероятностью могут привести к конденсации, поскольку в здании сохраняется более высокий уровень внутренней влажности. Если температура на улице медленно падает в течение нескольких дней, внутреннее пространство здания постепенно становится суше по мере поступления холодного наружного воздуха.

  2. Этот вывод справедлив даже для помещений с высокой влажностью, таких как музеи, поскольку у воздуха при 70 ° F / 50% относительной влажности точка росы составляет около 50 ° F / 10 ° C. Только сквозные крепежные детали, такие как винты, кирпичные стяжки и кровельные винты, будут подвергаться риску в условиях такой высокой относительной влажности.Плавательные бассейны могут иметь точку росы, превышающую 60 ° F / 15 ° C, и, следовательно, для предотвращения образования промежуточной конденсации в холодном климате потребуется более высокое значение R снаружи.

Контроль конденсации: почему правильный выбор изоляции защитит вас от дождя

Откуда эта вода?

Весь воздух на Земле содержит хотя бы немного влаги в виде водяного пара из-за земной атмосферы и климата. 1 Это означает, что водяной пар всегда будет присутствовать в воздухе вокруг ваших систем и будет конденсироваться в жидкость при правильных условиях.

Количество влаги в воздухе можно измерить по относительной влажности или процентному содержанию водяного пара в воздухе по сравнению с максимальным количеством водяного пара, которое может удерживать воздух этой температуры. Например, в Лас-Вегасе, штат Невада, самом засушливом из крупных городов США, средняя относительная влажность составляет 30%, что означает, что в среднем удерживается только 30% максимального количества водяного пара при этой температуре. в воздухе. Феникс, штат Аризона, занимает второе место в списке крупных засушливых городов с относительной влажностью 40%, при этом в большинстве крупных городов средний показатель составляет около 70%. 2

Точка росы — это температура, при которой водяной пар, находящийся в воздухе, конденсируется в жидкость. Чем выше относительная влажность, тем ближе точка росы к температуре воздуха; и наоборот, чем ниже относительная влажность, тем ниже температура точки росы. Например, при 68 ° F и относительной влажности 70% точка росы составляет 58 ° F, в то время как при той же температуре, но относительной влажности 30%, точка росы составляет 35 ° F. 3

Если температура поверхности ниже этой точки росы, воздух вокруг нее будет охлаждаться, а водяной пар конденсируется в жидкость.Таким образом, поддержание поверхностей систем ниже температуры окружающей среды выше температуры точки росы имеет первостепенное значение для контроля образования конденсата.

Конденсация: в помещении идет дождь

Системы, расположенные ниже температуры окружающей среды, такие как системы охлажденной воды, охлаждения и воздуховодов, очень чувствительны к образованию конденсата на их поверхностях. При температуре поверхности намного ниже средней точки росы в помещении эти системы могут быстро потеть и вызвать явный дождь в помещении.

Возьмем, к примеру, следующую трубу охлажденной воды с температурой 40 ° F в жарком и влажном помещении. Молекулы водяного пара в воздухе с температурой 80 ° F будут конденсироваться в жидкость, поскольку температура поверхности (Ts) 40 ° F намного ниже точки росы 72 ° F.

Очевидно, что это недопустимое состояние в пространстве, но что можно сделать, чтобы этого не произошло?

Предотвращение конденсации: используйте изоляцию!

Поддержание температуры поверхности выше точки росы, в данном случае 72 ° F, имеет первостепенное значение для предотвращения образования конденсата.Добавляя к системе изоляцию надлежащей толщины, вы не только экономите энергию, предотвращая приток тепла по всей системе, но также повышая температуру поверхности выше точки росы (Рисунок 3). Однако, если изоляция пористая, водяной пар все еще может проникать через изоляцию и конденсироваться на холодной поверхности трубы независимо от толщины изоляции. При использовании пористого изоляционного материала абсолютно необходим антипар для предотвращения прохождения водяного пара через изоляцию и конденсации.

Эти принципы справедливы и для систем воздуховодов. Поскольку системы кондиционирования не только охлаждают пространство, но и удаляют влажность, контроль конденсации также важен для систем воздуховодов. Правильная толщина изоляции с добавлением пароизолятора, если необходимо, предотвратит образование конденсата на поверхностях воздуховода, как и в системах трубопроводов ниже окружающей среды.

Почему образуется конденсат даже с изоляцией?

Даже после того, как система будет изолирована, конденсат может образоваться в результате просчета или неправильной установки.Если инженер не принимает во внимание условия экстремальной влажности в помещении или система функционирует за пределами нормальных проектных параметров, толщины изоляции будет недостаточно, чтобы компенсировать увеличение водяного пара в воздухе, и в результате будет образовываться конденсат. температура поверхности опускается ниже точки росы. Утеплитель также должен быть установлен правильно; любой зазор в изоляции или небольшое отверстие в пароизоляции приведет к конденсации и должны быть немедленно закрыты.

Для предотвращения конденсации в системе, находящейся ниже температуры окружающей среды, необходимо выбрать изоляционный материал с низкой проницаемостью для водяного пара, чтобы водяной пар не проходил через материал и не конденсировался в системе. Надлежащая толщина должна определяться исходя из наихудших условий в помещении и может быть подтверждена с помощью расчетных инструментов, используемых промышленностью или производителями. При правильной толщине и низкой проницаемости для водяного пара ваша система будет защищена от воздействия конденсации.

Проблема с конденсацией

Конденсация в механической системе вызывает неприятные ощущения не только в виде капающей воды; это также может привести к разрушительным последствиям для изоляции или самой системы. Проникновение влаги — это поглощение воды пористым материалом, которое приводит к увеличению теплопроводности и ухудшению изоляционной системы. Коррозия под изоляцией (CUI) может образоваться, когда вода попадает между системой и изоляцией, сильно разъедая металл под ней.При наличии воды и источника пищи плесень может следовать за любым конденсатом, который образуется в системе.

Попадание влаги: впитывает воду, как губка

Пористые изоляционные материалы используют замедлитель образования пара для защиты от накопления водяного пара. К сожалению, эти замедлители образования пара не являются полностью непроницаемыми, и часто в процессе регулярного технического обслуживания появляются надрезы или разрывы, или они не полностью герметичны во время установки из-за сложной конфигурации или ограниченного пространства.При любом зазоре в замедлителе образования пара водяной пар начнет накапливаться между пустотами, как губка, впитывающая воду, причем каждый 1% -ный рост содержания влаги приводит к потере 7,5% термической ценности. После заполнения всех пустот конденсат начнет скапливаться на внешней поверхности изоляции и в самой системе, образуя тепловой мост с теплопроводностью воды (4,1 БТЕ / (час ° F. Фут2 / дюйм) при 75 ° F средняя температура). Этот тепловой мост вызывает большой приток тепла в системе, находящейся ниже окружающей среды, поскольку изоляция переключается на проводник тепла, и эффективность вашей системы резко падает.Эта вода, находящаяся в непосредственной близости от системы, также может привести к другим проблемам, в первую очередь влияя на материал, который вы пытались защитить.

Коррозия под изоляцией (CUI)

Одна из проблем, которая может возникнуть в результате проникновения влаги, — это коррозия под изоляцией (CUI) или образование коррозии на поверхности системы, когда вода попадает между поверхностью системы и изоляцией. Хотя CUI может образоваться из-за сбоя системы (утечки) или неправильной защиты от атмосферных воздействий, это также может произойти, когда конденсат попадает на поверхность трубы через разрыв в пароизоляции.Попадание влаги в пористые материалы может привести к CUI, так как изоляция удерживает воду непосредственно рядом с самой системой, оборачивая металл влажным покрытием и обеспечивая средства для образования коррозии. Однако CUI также может образоваться, если водяной пар находит зазор в пароизоляции и продолжает конденсироваться под изоляцией. Любая система, подверженная коррозии, не будет работать должным образом, поскольку металл начинает разрушаться, а стоимость обслуживания замены поврежденной системы будет довольно высокой.Если оставить ее в покое достаточно долго, эта коррозия может привести к полному отказу системы, гораздо более катастрофическому отказу.

Форма

Плесень — это различные типы грибов, которые могут расти практически на любой поверхности, температура которой составляет от 32 ° F до 120 ° F (оптимально от 70 ° F до 90 ° F) без воздушного потока, влажного от влаги. 4 Если внутри изоляции образуется конденсат, а изоляция остается влажной, это создает идеальные условия для начала роста плесени, часто без каких-либо следов на внешней стороне изоляции.Затем эта плесень может распространиться по изоляции и начать формироваться на поверхности, где она может перемещаться по воздушному пространству и вызывать аллергию, сыпь, приступы астмы и общее плохое качество воздуха в помещении.

Заключение: делайте правильно с первого раза

В системах с температурой ниже окружающей среды всегда существует опасность образования конденсата. Если система не изолирована должным образом, попадание влаги, CUI и плесень вскоре последуют за первой каплей конденсата. Если вовремя не выявить образование конденсата, необходимо будет заменить не только изоляцию, но и сами трубопроводы, воздуховоды или другие компоненты системы, а также любое окружающее оборудование, на которое капал конденсат. .Важно убедиться, что система имеет изоляцию нужной толщины, чтобы температура поверхности всегда была выше точки росы, и использовать полную пароизоляцию, чтобы избежать риска конденсации.

Заявление об авторских правах

Эта статья была опубликована в выпуске журнала Insulation Outlook за октябрь 2018 г. Авторское право © 2018 Национальная ассоциация изоляторов. Все права защищены. Содержание этого веб-сайта и журнала Insulation Outlook не может быть воспроизведено каким-либо образом, полностью или частично, без предварительного письменного разрешения издателя и NIA.Любое несанкционированное копирование строго запрещено и является нарушением авторских прав NIA и может нарушать другие соглашения об авторских правах, заключенные NIA с авторами и партнерами. Свяжитесь с [email protected], чтобы перепечатать или воспроизвести этот контент.

Список литературы

1. http://articles.chicagotribune.com/2011-12-16/news/ct-wea-1216-asktom-20111216_1_relative-humidity-zero-dew-point
2. https: // www. currentresults.com/Weather-Extremes/US/low-humidity-cities.php
3. http://www.dpcalc.org/
4. Майкл Пульезе, Руководство домовладельца по плесени, Reed Construction Data, Inc © 2006

Два правила предотвращения повреждений, вызванных влажностью

Поскольку я так много писал о влажности в зданиях, я получаю много вопросов по этой теме. Некоторые о стенах. Некоторые о чердаке. Некоторые про окна. Некоторые из них касаются пространства для сканирования (которое вызывает больше всего вопросов по этой теме). Ключ к ответу на многие из этих вопросов сводится к пониманию того, как водяной пар взаимодействует с материалами.Зная это, легко увидеть два правила предотвращения повреждений от влажности.

Как водяной пар взаимодействует с материалами

Первое, что нужно понять, это то, что водяной пар, плавающий в воздухе, втягивается материалами, контактирующими с воздухом. Давайте проигнорируем здесь вопрос о гигроскопичности материалов и сосредоточимся на влиянии температуры. Разделительная линия — это температура точки росы. Когда температура материала выше точки росы, конденсации не происходит.Когда она ниже точки росы, происходит конденсация. И чем ниже температура материала, тем больше водяного пара он вытягивает из воздуха. (Да, я знаю. Конденсация — это не то же самое, что адсорбция или абсорбция. Чтобы разобраться в этом вопросе, прочтите мою статью Можно ли получить конденсат на губке? И не пропускайте комментарии.)

Мы используем точку росы в наших осушителях, которые пропускают влажный воздух через холодный змеевик, конденсируя большое количество водяного пара. Однако когда мы говорим о частях здания, мы не хотели бы, чтобы водяной пар конденсировался (или поглощался / адсорбировался) на материалах, будь то окна ванных комнат, балки перекрытий или стены с виниловым покрытием.Случайное осушение, как правило, нехорошо. Итак, вот два правила.

Правило 1. Не допускайте попадания влажного воздуха на прохладные поверхности

Когда вы изучаете планы здания или пытаетесь понять, что пошло не так в реальном здании, лучше всего начать с определения того, где находится влажный воздух и с какими частями здания он контактирует. Если у вас есть вентилируемое пространство для ползания во влажном климате, влажный воздух находится в этом пространстве. Точка росы этого воздуха может быть 75 ° F или выше.Когда жилое пространство наверху кондиционируется, пол может опуститься ниже точки росы, в зависимости от того, насколько прохладно в доме обитатели. Но даже когда термостат выставлен на 75 ° F, пол может быть прохладнее. Если в этом пространстве для ползания обнаружится какая-либо древесина или другие материалы, охлаждаемые при контакте с пространством выше, эти материалы могут всасывать воду из влажного воздуха.

Зимой тоже могут быть проблемы. На фото ниже показаны балки перекрытия, стропильные фермы и черновой пол в подвесном помещении в холодный день.Строитель продолжал герметизировать пространство для обхода, чтобы предотвратить эту проблему, но они не установили пароизоляцию вовремя, чтобы предотвратить этот беспорядок. Влажный воздух в подвале повсюду находил холодные поверхности, пока дом еще строился.

Используя пространство для подполья, вы можете разделить влажный воздух и холодные поверхности несколькими способами. Вы можете изолировать пространство для обхода и удалить влажный воздух. Или вы можете убедиться, что влажный воздух из космоса не приближается к поверхностям, температура которых может быть ниже точки росы.Ватины из стекловолокна в полу не доставят вас туда. Вам нужно будет использовать аэрозольную пену с закрытыми порами или положить какой-нибудь воздушный барьер (обычно жесткий пенопласт) на нижнюю часть балок пола.

То же самое относится ко всем остальным частям дома. Там, где у вас влажный воздух, нужно следить за тем, чтобы не было прохладных поверхностей. Иногда эти поверхности охлаждаются путем кондиционирования жилого помещения. Иногда они охлаждаются погодой на открытом воздухе.

Правило 2. Держите поверхности в тепле при контакте с влажным воздухом

Хорошо, второе правило действительно такое же, как первое, только наоборот.(Технически это противопоставление вам, логикам.) Первое правило гласит, что там, где у вас прохладные поверхности (, т.е. ниже точки росы), вам нужно не допускать попадания влажного воздуха. Второе правило гласит, что там, где у вас влажный воздух, нужно держать соседние поверхности выше точки росы.

Представьте себе сборку стены. Переходя изнутри дома на улицу, основная сборка состоит из гипсокартона, изоляции каркаса / полости, обшивки и облицовки. Где влажный воздух? Летом, скорее всего, на открытом воздухе.Если вы не хотите, чтобы водяной пар конденсировался на вашем сайдинге или обшивке, вам нужно убедиться, что температура этих материалов не ниже точки росы. Если у вас есть изоляция в стенах, скорее всего, у вас не будет проблем. Даже без теплоизоляции эти стены вряд ли будут ниже точки росы, если в доме не будет по-настоящему холодно.

Поверхность, которая, скорее всего, будет иметь температуру ниже точки росы, — это гипсокартон. Если у вас возникла проблема, вы нарушили правило 1.Это означает, что ваша стеновая обшивка не действует как хороший воздушный барьер. (На ведущей фотографии в этой статье показан случай, когда это произошло.)

Наиболее частым примером нарушения правила 2 является конденсация на внутренней стороне внешней обшивки в холодную погоду. Если вы поддерживаете в доме температуру 70 ° F и относительную влажность 40%, точка росы составляет 45 ° F. Обычно мы не будем считать это влажным воздухом, но зимой определенно можно найти поверхности с температурой ниже 45 ° F. . Это делает его потенциальным источником проблем с влажностью.

Поскольку водяной пар находится внутри дома, а холодные поверхности снаружи, нам просто нужно следить за тем, чтобы влажный воздух соприкасался только с теплыми поверхностями. Это означает, что нам нужна хорошая изоляция, чтобы гипсокартон оставался теплым. И нам нужна хорошая воздухонепроницаемость, чтобы влажный воздух не попадал в стену и не находил холодную обшивку.

Но и этого недостаточно для домов в холодном климате. Водяной пар может проходить через стенную конструкцию за счет диффузии, а также утечки воздуха.Использование непрерывной изоляции снаружи обшивки решает эту проблему, сохраняя теплоту оболочки. Мартин Холладей затронул эту тему в своей статье Расчет минимальной толщины жесткого пенопласта . Новые правила также включают требования к непрерывной изоляции в большинстве климатических условий.

Если вы выберете стены с двойными каркасами, убедитесь, что у вас есть пароизоляция, замедляющая движение водяного пара к холодной обшивке. См. Мою статью о стенах с двойным каркасом для получения дополнительной информации по этому вопросу.Еще один полезный ресурс — статья Мартина Холладея «» Насколько опасна холодная обшивка стен OSB?

Хранить вещи в сухом состоянии

Водному пару, вероятно, уделяется больше внимания, чем он заслуживает, в наших обсуждениях проблем влажности в зданиях. Налив воды из-за плохого оклада, глупой конструкции крыши и неисправных желобов вызывает гораздо больше проблем, чем водяной пар. Тем не менее, водяной пар имеет значение. Если вы читаете это холодным зимним днем, вы можете быть уверены, что где-то на окно ванной комнаты капает конденсат, а в доме с плохо изолированными стенами и невентилируемыми обогревателями растет плесень.Если вы можете определить проблему, вызванную влажным воздухом, у вас есть два способа справиться с ней: не допускайте попадания влажного воздуха на прохладные поверхности или согревайте поверхности, когда они контактируют с влажным воздухом.

Статьи по теме

Случайное осушение — грязь, которую можно предотвратить

Как лучше всего справиться с Crawl Space Air?

4 способа попадания влаги в вентилируемое пространство для ползания

ПРИМЕЧАНИЕ: Комментарии модерируются.Ваш комментарий не появится ниже, пока не будет одобрен.

Точка росы в изоляционных стеновых конструкциях

Диаграмма точки росы по отношению к элементам стеновой конструкции. В этой сборке в качестве внешней изоляции используется пробковая плита (любезно предоставлено Siegel + Strain Architects, Emeryville)

Читатель недавно спросил в ответ на нашу недавнюю публикацию Дивный новый мир изоляционных стеновых сборок : «Будет ли добавление внешней изоляции действовать для уменьшения вероятности конденсации»?

Короткий ответ: добавление внешней теплоизоляции всегда снижает риск конденсации внутри стеновой конструкции.

Тем не менее, при проектировании всего стенного узла, включая изоляцию в отсеке для стоек + внешнюю изоляцию, мы хотим спроектировать всю сборку с точкой росы за пределами стеновой обшивки. Таким образом, конденсация, в тех редких случаях, когда она все-таки возникает, не происходит внутри отсека для шипов.

Соотношение наружной и внутренней изоляции для предотвращения конденсации при утечке воздуха. С любезного разрешения Building Science Digests: Контроль конденсации в холодную погоду с помощью теплоизоляции, Джон Штраубе, 03/10/11

Таблица справа дает рекомендации по балансировке изоляции.В коммерческом применении можно предположить, что относительная влажность в помещении составляет 35%. В Санта-Крус средняя температура за три самых холодных зимних месяца (декабрь, январь, февраль) составляет 49,7 градуса. Их перекрестная индексация (35% x 50 градусов F) дает 0,00. Другими словами, в нашей климатической зоне из-за умеренных температур балансировка изоляции вряд ли будет рассматриваться.

Наиболее консервативная оценка может предполагать, что относительная влажность в помещении находится на самом высоком конце спектра, то есть 60%. В том же температурном диапазоне (50 ° F) это приводит к соотношению 24% внешней изоляции.Если мы стремимся получить стену из R-20, это означает, что рекомендуется встроить R-4,8 во внешнюю изоляцию, а остальную часть (20,0–4,8 = 15,2) — в полость. Используя обычную изоляцию, варианты могут включать: A. R14 Batt + R6 жесткая = R20 мишень B. R19 Batt + R1 жесткая = R20 мишень. Поскольку это соотношение составляет менее 24%, вариант А является лучшим из двух, поскольку из двух вариантов с наименьшей вероятностью может возникнуть конденсация внутри полости.

В Building Science есть подробная и исчерпывающая статья.com: http://www.buildingscience.com/documents/digests/bsd-controlling-cold-weather-condensation-using-insulation. Его автор, доктор Джон Штраубе из Университета Ватерлоо, считается авторитетным специалистом в области переноса влаги в строительных материалах и системах.

Нравится:

Нравится Загрузка …

Связанные

Центр CE — Понимание критических элементов воздухо- и пароизоляции

Конструкции стеновых систем

Размещение определенных компонентов в стеновой сборке в сочетании с географией расположения проекта повлияет на ваше определение идеальной сборки стен для работы.

Один фактор, о котором следует помнить, — это точка росы — температура, при которой воздух насыщается водяным паром, в результате чего пар превращается из газа в жидкость. Когда воздух достигает температуры точки росы при определенном давлении, водяной пар в воздухе находится в равновесии с жидкой водой, что означает, что водяной пар конденсируется с той же скоростью, с которой жидкая вода испаряется. Одним из основных элементов, влияющих на образование точки росы, является изоляция. В результате положение изоляции влияет на место образования точки росы в стеновой конструкции.

Привод пара из теплого воздуха в здании может вызвать конденсацию внутри изоляции в зависимости от значения R и местоположения точки росы.

Будет ли эта стена работать? Почему или почему нет?

Вы можете заметить, что на внешнюю обшивку помещена непроницаемая мембрана в сочетании с изоляцией из войлока во внутренней полости стойки. В результате эта стена не будет работать хорошо. Теплый кондиционированный воздух внутри будет выталкиваться наружу, чтобы попытаться уравновесить холодный наружный воздух, но поскольку присутствует непроницаемая мембрана (пароизоляция, обозначенная оранжевой линией), пар будет задерживаться в изоляции и собирать — дело нехорошее.

Теплый кондиционированный воздух остается внутри здания, не скапливаясь в изоляции, а пары снаружи могут входить и выходить из сборки через проницаемую мембрану.

Как насчет этой стены? Будет ли он хорошо работать? Почему или почему нет?

Все условия такие же, как в предыдущем примере, за исключением того, что мы переместили непроницаемую мембрану внутрь стены и поместили проницаемую мембрану напротив внешней оболочки. Теплый кондиционированный воздух останавливается прежде, чем он достигнет изоляции и не соберется.Внешние условия будут меняться по мере изменения климата с холодного на теплый, и пары влаги смогут проникать в сборку, потому что у нас есть проницаемая мембрана на внешней обшивке. Влага, которая попадает в стенную конструкцию, может выйти из-за проницаемой мембраны. Это считается «хорошей стеной» или «проницаемой стеной».

Этот тип сборки с двойным барьером — хороший вариант для жаркого климата, так как он не пропускает горячий влажный воздух, но позволяет стене «дышать».

Эта же конструкция стены хорошо работает в жарком климате.Тем не менее, стоит отметить, что эта стена работает на бумаге, и если бы программа моделирования была запущена с этой стеной, она бы работала хорошо. Есть несколько вещей, которые следует учитывать при выборе этого типа стены, однако это может быть не очевидно из диаграммы. Пароизоляция, присутствующая во внутренней полости стойки, представляет собой незакрепленный кусок полиэтилена, механически закрепленный. Материал прикреплен с помощью множества креплений, что приводит к множеству проникновений в дополнение к проникновениям, исходящим от электрических розеток, проходов труб и тому подобного.Это поставит под угрозу производительность и функциональность пароизоляции в данном примере. Кроме того, в многоуровневых конструкциях полиэтилен начинается и останавливается на каждом этаже, что очень затрудняет правильную детализацию и привязку. Это те проблемы, с которыми вы столкнетесь в реальных приложениях, но их не всегда можно предвидеть без тщательного анализа потенциальных переменных.

Жесткая изоляция помещается во внешнюю полость, а пароизоляция препятствует выходу паров влаги из здания без образования конденсата.

Давайте посмотрим на другую конструкцию стеновой системы. Будет ли эта сборка стены работать хорошо?

В этом примере сборки стены изоляция выполнена в виде жесткой изоляции. Во внутренней полости стойки нет изоляционного войлока. Теплый кондиционированный внутренний воздух пытается выйти наружу к холодному наружному воздуху, но его сдерживает полностью прилипший воздух и пароизоляция. Из-за отсутствия изоляционного материала в полости стойки нет ничего, на чем могла бы скапливаться влага и нарушить целостность стены.Стальные шпильки и внешняя оболочка также намного лучше переносят влагу до тех пор, пока не изменятся условия и не произойдет высыхание.

Эту стену называют «идеальной стеной». Размещение жесткой изоляции во внешней полости обуславливает внешнее пространство, одновременно сдвигая точку росы и во внешнюю полость. Это гарантирует, что любая влага, которая будет накапливаться из-за точки росы, попадет во внешнюю полость. Тогда он сможет выйти из системы просачивания в облицовке кирпича.Установка воздухо- и пароизоляции на наружную обшивку помогает обеспечить качественный монтаж, поскольку ее можно легко осмотреть снаружи здания. Благодаря жесткой изоляции, расположенной во внешней полости, эта стена также удовлетворяет требованиям Международного кодекса энергосбережения (IECC) для непрерывной изоляции.

«Идеальная стена» не только идеальна при низких температурах, но и хорошо работает в жарком климате.

Если бы мы развернули эту «идеальную стену» в жарком климате, мы бы увидели, как теплый влажный воздух движется внутрь прохладного кондиционированного воздуха.Благодаря наличию жесткой изоляции от полностью приклеенной воздухо- и пароизоляционной мембраны теплый влажный воздух не может проникать и встречаться с холодным кондиционированным воздухом. «Идеальная стена», если она спроектирована и установлена ​​правильно, работает в любом климате и в любом географическом месте.

Влага проникает через воздушный барьер, затем собирается на бетонной стене, где она не может высохнуть из-за высокой влажности.

Теперь давайте рассмотрим более конкретный климатический аспект. Будет ли эта стена работать в жарком влажном климате, как во Флориде?

Это обычное стеновое сооружение на крайнем юге США.С., например, Майами. На внешнюю поверхность блока нанесена проницаемая мембрана, но когда климат постоянно жаркий и влажный, эта конструкция не будет работать хорошо. Горячий влажный воздух достигнет прохладного и сухого внутреннего воздуха и принесет с собой огромное количество пара, вызывая скопление влаги во внутреннем пространстве. В климате с небольшими колебаниями температуры стена практически не высыхает. Это пример того, что проницаемая мембрана — не лучший вариант.

Лучшим вариантом будет такая же конструкция, но с непроницаемой пароизоляцией вместо воздушной. Горячий влажный воздух не сможет попасть внутрь из-за полностью прилипшего воздухо- и пароизоляции. Это сохраняет наружный и внутренний воздух разделенными и исключает возможность конденсации внутри стены.

Влага проникает через воздушный барьер, затем собирается на бетонной стене, где она не может высохнуть из-за высокой влажности.

Теперь давайте рассмотрим пример сборки стены в климатических условиях, где нет резких различий между внешними и внутренними характеристиками воздуха.В этом случае хорошо подойдет как проницаемая, так и непроницаемая мембрана. Нет борьбы горячего влажного воздуха с холодным кондиционированным воздухом. Температурные колебания будут незначительными, поэтому любая образовавшаяся влага будет иметь возможность высохнуть, как только температура вернется на постоянный уровень.

Непроницаемый пароизоляционный барьер будет более успешным в удерживании водяного пара, который с трудом высыхает во влажном климате.

Измерение точки росы трансформатора влажность изоляции 1 | Статьи

T&D Guardian

Не секрет, что вода и электричество плохо сочетаются друг с другом.Даже малейшее количество влаги в силовом трансформаторе может вызвать проблемы различной степени — от ограниченной мощности до катастрофического отказа. В этой статье мы рассмотрим основы измерения точки росы для оценки содержания влаги в сухой изоляции внутри силовых трансформаторов. Это полезно во время установки, после выполнения планового обслуживания и в течение всего срока службы трансформатора.

Справочная информация об измерениях точки росы

Точка росы — это температура, до которой необходимо охладить воздух, чтобы началась конденсация воды.В точке росы парциальное давление водяного пара в воздухе равно давлению насыщения водяным паром. В этом состоянии конденсация и испарение находятся в равновесии и происходят с одинаковой скоростью. Поскольку корреляция между давлением насыщения водяным паром и температурой известна, точку росы можно рассчитать по измеренной температуре и относительной влажности. Давление также является компонентом точки росы — любое изменение общего давления изменяет парциальное давление водяного пара в измеряемом газе.

Традиционный метод измерения точки росы — это прибор с охлаждаемым зеркалом, при котором зеркало охлаждают до образования росы. Образование росы вызывает рассеивание света на поверхности, что обнаруживается оптикой. В начале образования росы температура зеркала, обозначающего точку росы, считывается термометром. Эта фундаментальная измерительная технология традиционно используется в качестве эталона для калибровки в лабораториях, поскольку дает очень точные результаты в широком диапазоне точек росы.Однако он не переносит запыленные или богатые углеводородами среды из-за своей чувствительной оптики и поэтому реже используется для целей управления технологическим процессом.

Последняя технология включает в себя емкостные датчики для измерения точки росы пробы газа и является основой для большинства современных датчиков точки росы. Независимо от технологии, измеритель точки росы должен работать при низком давлении на входе в условиях окружающей среды и с хорошим разрешением до точки росы -60 ° C (-76 ° F) или ниже.

Оценка влажности изоляции

В течение многих лет метод измерения точки росы широко использовался для оценки содержания влаги в сухой изоляции внутри силовых трансформаторов. Опыт убедительно показывает, что этот метод обеспечивает точный и надежный метод оценки влажности в газовом пространстве. При правильном использовании он может быть очень полезным инструментом.

Точка росы в закрытом сосуде зависит от поверхностной влажности изоляции.Для надежного измерения необходимо, чтобы было достигнуто состояние равновесия между уровнем поверхностной влажности и уровнем окружающего газового пространства. Когда внутренняя атмосферная среда изменяется за счет введения сухого воздуха или сухого азота, должен наступить период уравновешивания, чтобы точка росы адекватно отображала поверхностную влажность. Равновесие существует, когда в других статических условиях влажность остается постоянной в течение 6-12 часов.

Зная точку росы в градусах Цельсия, можно получить давление пара.Если общее давление на приборе точки росы отличается от давления в резервуаре, измеренное давление пара необходимо скорректировать, умножив измеренное значение на отношение абсолютного давления в резервуаре к абсолютному давлению на приборе для определения точки росы. Среднее содержание влаги на поверхности изоляционной конструкции может быть определено на основе температуры изоляции и давления пара в изоляционной среде.

Пример с использованием следующих условий измерения иллюстрирует эту процедуру:

Согласно C57.93-2007 (Приложение B) Рисунок B1 — преобразование точки росы или точки замерзания в давление пара — давление пара составляет 100 мкм (13,3 Па). Используя этот рисунок и информацию выше, скорректируйте давление пара в соответствии с условиями в резервуаре:

100 * (14,7 + 2) / (14,7 + 0) = 114 мкм (15 Па)

Согласно C57.93-2007 Рисунок B.2 — График равновесия влажности — влажность составляет 0,75% от сухого веса изоляции на стыке с давлением пара 114 мкм (15,2 Па) и температуре изоляции 20 ° С.

Рекомендуется несколько раз измерять давление, температуру и точку росы в течение периода выравнивания (12–24 часа), чтобы гарантировать достижение равновесия. Равновесие существует, когда в других статических условиях влажность остается постоянной не менее 12 часов.

При измерении точки росы необходимо обратить внимание на следующие четыре меры предосторожности:

  1. Должны быть достигнуты условия равновесия.

  2. Температура изоляции должна быть известна точно.

  3. Измерительное оборудование должно быть правильно откалибровано и находиться в хорошем рабочем состоянии.

  4. Может потребоваться снимать зонд точки росы или другой датчик после каждого использования, чтобы минимизировать риск загрязнения парами масла и разбрызгиванием масла. Загрязнение может нарушить калибровку.

Список литературы

IEEE C57.93-2007 РУКОВОДСТВО ПО УСТАНОВКЕ И ТЕХОБСЛУЖИВАНИЮ ТРАНСФОРМАТОРОВ СИЛЫ, ПОГРУЖЕННЫХ В ЖИДКОСТЬ

РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ ИЗМЕРИТЕЛЯ ТОЧКИ РОСЫ VAISALA (M010091EN-F) 2007; Vaisala Oyj; Хельсенки, Финляндия

РУКОВОДСТВО ПО АВТОМАТИЧЕСКОМУ ИЗМЕРЕНИЮ ТОЧКИ РОСЫ SHAW (SADPMAN0704) 2004; Moisture Meters Ltd; Вестгейт, Брэдфорд, Англия

Управление влажностью | WBDG — Руководство по проектированию всего здания

Введение

Спустя всего несколько месяцев после того, как они заняли свое новое муниципальное здание стоимостью в несколько миллионов долларов, сотрудники одного из округов Флориды начали жаловаться на хронические проблемы с носовыми пазухами, приступы аллергии, головные боли и астму — классические признаки синдрома больного здания и заболеваний, связанных со зданиями.Архитекторы, инженеры и микробиологи, которым было поручено найти причину этих симптомов, определили проблему, которая становится широко распространенной по всей стране — серьезное грибковое заражение здания.

Плесень возникла в результате чрезмерной влажности в здании, вызванной сочетанием утечек дождевой воды и системой отопления, вентиляции и кондиционирования воздуха (HVAC), которая втягивала влажный наружный воздух в здание в те часы, когда система охлаждения отключилась.Как только система HVAC была заражена плесенью, споры разошлись по всему зданию. Итак, всего через несколько лет после открытия дверей в здании был произведен капитальный ремонт.

Рис. 1. Это новое муниципальное здание было эвакуировано вскоре после открытия, поскольку жильцы жаловались на здоровье. Виной тому были плесень и влага, и, в конце концов, для устранения проблемы потребуется более 20 миллионов долларов.

Внешний вид здания был удален, чтобы помочь решить проблемы, которые позволили дождевой воде проникнуть в ограждающую конструкцию здания (рис. 1).Крыша и система отопления, вентиляции и кондиционирования также претерпели значительные изменения. В конечном итоге ремонт и другие сопутствующие расходы превысили 20 миллионов долларов.

К сожалению, проблема, стоящая перед этим округом Флориды, не является изолированной. Утечки дождевой воды случаются в любом климате, и в данном конкретном случае только утечки, вероятно, привели бы к значительному микробному заражению и эвакуации из здания. Но и архитекторы, и инженеры должны понимать взаимодействие между оболочкой здания и системой отопления, вентиляции и кондиционирования воздуха, чтобы управлять проникновением влаги в здания.

Описание

Чтобы избежать проблем, характерных для муниципального здания Флориды, инженеры и архитекторы должны работать вместе, чтобы управлять влажностью. Во-первых, проектировщик здания должен понимать основные причины проникновения влаги в здания:

  • Вторжение дождевой воды. Влага, присутствующая в строительных материалах и на строительной площадке во время строительства, может быть источником проблем. Значительное количество влаги может также возникнуть в результате утечки воды в системах здания или через ограждающую конструкцию здания.Как в жарком, влажном, так и в умеренном климате утечки дождевой воды являются основным источником влаги в зданиях и проблемами роста грибков.

  • Проникновение наружного влажного воздуха. Влажный воздух, проникающий через ветер или через систему отопления, вентиляции и кондиционирования воздуха, может вызвать конденсацию на внутренних поверхностях, в том числе в полостях здания. Конденсация и высокий уровень относительной влажности являются важными факторами в создании среды, способствующей росту плесени, и являются основными проблемами в жарком влажном климате.Проблема инфильтрации, вызванная отрицательным давлением в здании, создаваемым системами HVAC, подробно описана в разделе «Проектирование и строительство HVAC во влажном климате».

  • Влага, генерируемая внутри. После строительства в результате действий жильцов и рутинных операций по уборке может возникнуть дополнительная влажность, что усугубит проблему плесени. Обычно, если нет других значительных источников, хорошо спроектированные и правильно работающие системы HVAC могут адекватно удалить эту влагу.

  • Распространение пара через ограждающую конструкцию здания. Дифференциальное давление пара, которое может вызвать диффузию водяного пара через ограждающую конструкцию здания, является менее существенной причиной проблем с влажностью в зданиях во влажном климате. Однако он может быть значительным механизмом движения влаги, особенно в холодном климате, и особенно в отношении конструкции пароизолятора стеновых систем.

В жарком влажном климате взаимосвязь между оболочкой здания и системой отопления, вентиляции и кондиционирования воздуха особенно важна.Многие проблемы, связанные с влажностью и плесенью, во влажном климате часто ошибочно диагностируются как исключительно связанные с конвертом или ОВК, потому что сложная взаимосвязь, существующая между обеими системами, не всегда четко понимается.

Проблем, связанных с влажностью, можно избежать, если оболочка здания выполняет следующие действия:

  • Достаточно ограничивает проникновение влаги или воздуха в здание
  • Позволяет любой накопленной влаге стекать наружу или испаряться

В жарком влажном климате воздушный барьер и пароизоляция в ограждающей конструкции здания должны быть достаточными для контроля потока воздуха и влаги через стеновую систему.Это означает, что любой воздушный барьер или замедлитель парообразования, размещенный в стеновой системе, должен обладать надлежащим сопротивлением воздуху или влагопроницаемостью и должен быть установлен в правильном месте внутри стен. Наличие нескольких замедлителей образования пара в стеновой системе — обычная проблема, потому что многие дизайнеры не признают многие строительные материалы эффективными барьерами. Например, фанера — это материал с относительно низкой проницаемостью, который может действовать как замедлитель парообразования.

Место, где прохладные поверхности встречаются с теплым влажным воздухом, — это место, где может образоваться конденсат и избыток влаги.Если влажный наружный воздух задерживается до того, как он встретится с первой прохладной поверхностью внутри ограждающей конструкции (часто называемой «первой плоскостью конденсации»), то возникнет несколько проблем. Если этой влаге позволить проникнуть в стенную систему, она будет конденсироваться. Тогда проблемы с влажностью и ростом плесени могут стать реальной угрозой. Если прохладные поверхности и влажный воздух встречаются в помещении, то проблемы с влажностью могут возникнуть по всему зданию, что приведет к распространению запаха плесени и жалобам от жителей.Таким образом, ограждающая конструкция здания играет жизненно важную роль в минимизации неконтролируемого движения влаги и воздуха в здание и в предотвращении захвата влаги внутри стеновой системы.

В сообществе разработчиков все еще существует путаница по поводу нескольких критических вопросов, связанных с производительностью конвертов. Эти вопросы включают требования к целостности воздушных барьеров, погодных барьеров и замедлителей образования пара; способ объединения всех трех барьеров / замедлителей в одну мембрану; расположение этих элементов внутри оболочки здания; эффекты использования нескольких замедлителей образования пара; и даже потребность в воздушных барьерах и пароизоляторах на каждом предприятии.

Эта путаница в проектировании, строительстве и эксплуатации влажного и не влажного климата является причиной многих проблем, связанных с влажностью и ростом плесени. ASHRAE Fundamentals (2009) предупреждает, что разные климатические условия создают разные проблемы, и здания должны проектироваться и эксплуатироваться соответствующим образом.

Приложение

На этапе проектирования, особенно на ранних этапах проектирования, можно принять множество недорогих или бесплатных решений относительно систем отопления, вентиляции и кондиционирования воздуха и ограждающих систем, которые окажут значительное влияние на управление влажностью.На рисунке 2 обобщены соображения по контролю влажности, обычно связанные с этапом схематического проектирования. Хотя ответственность за решение этих вопросов можно разделить в соответствии с архитектурными и механическими функциями, персонал обеих дисциплин должен работать вместе, чтобы предотвратить проблемы в будущем. Эффективное взаимодействие между членами команды дизайнеров имеет решающее значение для создания беспроблемного дизайна.

На рисунке 2 показаны некоторые типичные проблемы проектирования, которые должны быть рассмотрены командой разработчиков на этапе схематического проектирования, и показана взаимосвязь между архитектурными и механическими аспектами проектирования.

Рис. 2. Эти вопросы необходимо учитывать на этапе схематического проектирования.

Хотя известно, что некоторые проектные решения неизбежно создают больший риск проникновения влаги, степень проблемы с влажностью или плесенью определяется другими менее обширными решениями, принимаемыми после основных конструктивных решений.

Архитектурные особенности

Хотя подробные проекты не завершаются на этапе схематического проектирования, принимаются решения, которые формируют основу проектов, разрабатываемых на следующем этапе (Разработка проекта, Раздел 3).Доступные справочники по проектированию для влажного, дождливого или холодного климата могут не предоставить всю информацию, необходимую для выполнения комплексных строительных проектов. Поэтому группа архитектурных проектировщиков должна руководствоваться здравым смыслом при выборе системы ограждающих конструкций здания во время схематического проектирования, включая погодные и воздушные барьеры и замедлитель образования пара (рисунок 3).

Рис. 3. В жарком и влажном климате конструкция, расположение и установка воздушных и погодных барьеров более важны, чем для замедлителя образования пара.Примечание. Указанное выше расположение замедлителя парообразования предназначено специально для жаркого и влажного климата. В холодном климате замедлитель схватывания следует размещать с внутренней стороны теплоизоляции.

Поскольку все возможные проблемы, связанные с влажностью в новом строительстве, не всегда сразу очевидны для архитектора, вопросы проектирования, связанные с архитектурными аспектами строительства, должны решаться всей командой проектировщиков. Например, внутреннюю отделку часто выбирают просто из-за эстетической привлекательности, начальной стоимости или простоты обслуживания.Однако проницаемость внутренней отделки (обозначенная рейтингом проницаемости) может сильно повлиять на влажность и потенциал плесени в конструкции, в зависимости от типа рассматриваемой системы HVAC. Следовательно, инженер-механик и члены группы архитектурных проектировщиков должны иметь свой вклад при выборе стенной системы.

Диффузия пара

Потенциал диффузии пара является функцией перепада давления пара в ограждающей конструкции здания (рис. 4). Горячий влажный воздух имеет более высокое давление, чем холодный сухой воздух.Большое давление пара возникает из-за высокого содержания влаги. Давление пара при любом содержании влаги равно сумме всех давлений отдельных молекул пара. Большое количество водяного пара создает значительную силу; Фактически, в некоторых случаях перепад давления может быть достаточно большим, чтобы краска на внешней обшивке покрылась пузырями и отслаивалась, когда влага из дерева или кирпичной кладки выводится наружу. Пар диффундирует через стенки со скоростью, пропорциональной разнице давления пара. Если одна сторона стены намного суше, чем другая, пар будет диффундировать быстрее ( The Dehumidification Handbook , 1990).

Рис. 4. Пар диффундирует через стену со скоростью, пропорциональной разнице давления пара на стене.

Проблемы с диффузией пара, как правило, наиболее остры в холодном климате, где даже небольшое количество внутренней влаги будет конденсироваться внутри полостей холодных стен в зимние месяцы. В таком климате требуется установка пароизоляции внутри (теплая сторона стены). В жарком влажном климате механизм диффузии пара обычно не вызывает значительного увлажнения здания, особенно в коммерческих зданиях с традиционным кондиционированием воздуха и умеренными температурными условиями.Однако в зданиях с более низкими температурами, чем обычно, например, в больничных операционных, диффузия и конденсация пара все еще могут происходить.

Утечка воздуха

Рис. 5. На утечку воздуха в здание могут влиять типичные проникновения в ограждающую конструкцию здания.

Ни одно здание не герметично закрыто. То есть все здания имеют некоторые отверстия для утечки воздуха, присущие конструкции оболочки, и эта утечка переносит определенное количество влаги с собой в здание или из него (Рисунок 5).Хотя эту утечку обычно можно преодолеть с помощью хорошего положительного давления, плотно закрытая ограждающая конструкция здания минимизирует утечку воздуха. и уменьшат количество воздуха, требуемого системой HVAC для достижения хорошего давления. Влага, создаваемая утечкой воздуха, является значительным источником и должна стать серьезной проблемой при проектировании системы стен. Фактически, конструкция ограждающей конструкции здания для минимизации утечки воздуха более важна, чем конструкция пароизоляции.

Чтобы проиллюстрировать этот момент, представьте, что количество влаги, вносимой в здание воздухом, который проходит через трещину толщиной 1/16 дюйма и длиной 1 фут, при легком ветре составляет чуть более 5 пинт в день.Напротив, количество влаги, вносимой диффузией пара через окрашенную блочную стену размером 10 на 50 футов за тот же период, составляет чуть менее 1/3 пинты (около 5 унций). Наиболее опасными зонами утечки воздуха через оболочку являются зазоры вокруг окон и дверей; совместные проемы на линиях крыши, потолка или пола; и, возможно, наибольший вклад внесла преднамеренная установка вентиляционных систем на потолке или стене. Эти области представляют собой наиболее вероятные отверстия в оболочке здания и являются удобными путями для утечки воздуха и проникновения влаги в здание.

Утечка дождевой воды

В дополнение к влаге, попадающей в здание через диффузию пара или утечку воздуха, влага, такая как дождевая вода, может попадать в здание под действием силы тяжести, капиллярного действия, поверхностного натяжения, перепада давления воздуха или ветровых нагрузок. Оболочка здания (внешние стены и кровля) действует как , интерфейс между интерьером и экстерьером зданий. Чтобы избежать проблем с влажностью в экстремальных погодных условиях, конструкция ограждающей конструкции здания должна контролировать воду за счет всех этих факторов.

Влажность, связанная с погодой, включает проникновение воды из дождевых и грунтовых вод. Проникновение дождевой воды и грунтовых вод наиболее сильно влияет на ограждающую конструкцию здания. Дождевая вода редко влияет на системы отопления, вентиляции и кондиционирования воздуха или внутренние помещения зданий в такой степени, которая вызывает широко распространенные проблемы с влажностью в зданиях. Вода концентрируется вокруг оконных и дверных проемов, линии крыши и строительных швов, а также у основания внешних стен.

К ограждающей конструкции здания чаще всего прикладываются следующие силы:

  • Гравитация. Сила воды, проникающей под действием силы тяжести, является наибольшей на горизонтальных поверхностях с неправильным уклоном и вертикальных поверхностях с проникновениями. Эти области должны удалять воду с поверхностей ограждающих конструкций за счет соответствующего наклона, правильного дренажа и надлежащего гидроизоляции.

  • Капиллярное действие. Это естественная сила, направленная вверх, которая может втягивать воду из одного источника в полость оболочки. Это происходит в основном у основания наружных стен. Компоненты здания, которые не могут выдерживать большое количество воды, например фанера или гипсокартон, могут создавать среду, способствующую росту микробов и / или выходу компонентов из строя.

  • Поверхностное натяжение. Это позволяет воде прилипать и перемещаться по нижней стороне строительных компонентов, таких как стыки и оконные головки. Эта вода может втягиваться в здание под действием силы тяжести или неравномерного давления воздуха.

  • Дифференциалы давления воздуха. В жарком и влажном климате, если давление воздуха внутри конструкции ниже, чем снаружи конструкции, вода может «вытесняться» снаружи внутрь здания через микроскопические отверстия в строительных материалах.

  • Ветровая нагрузка. Ветровая нагрузка во время сильных ливней может вызвать попадание воды внутрь здания, если оболочка не выдерживает этих сил. Например, оконные герметики и прокладки, которые не предназначены для изгиба с окном, могут создавать воздушные зазоры, через которые вода может проникать в здание.

Компоненты настенной системы

Большинство стеновых систем, используемых в новом строительстве, представляют собой каркасные стеновые системы, монолитный бетон или каменные стены (бетонные блоки или кирпич).

Системы каркасных стен состоят из системы отделки внутренней стены и системы отделки внешней стены, разделенных воздушным пространством (или полостью). Полость, которая обычно включает изоляционный материал для дополнительного термического сопротивления, обеспечивает потенциальный путь для движения влаги по участкам стен. Системы фасадных стен и системы внешней изоляции и отделки (EIFS) представляют собой каркасную конструкцию.

Стеновая система из бетона или кирпича изготавливается из конструкционного стенового материала.Если внутренняя и внешняя отделка наносится непосредственно на поверхность несущей стены, движение воздуха внутри стены ограничивается. Однако, если внутренняя отделка применяется к гипсокартону с мехом, прикрепленному к несущей стене, создается потенциальный путь для движения воздуха.

Компоненты системы основных стен, требующие особого внимания для контроля влажности (Рисунок 6), перечислены ниже:

  • Отделка наружных стен
  • Замедлители парообразования
  • Воздухопроницаемые и дождевые барьеры и уплотнения
  • Изоляция
  • Отделка внутренних стен

Рисунок 6.«Простая» (хорошо спроектированная) стеновая система для жаркого и влажного климата имеет высокое сопротивление движению наружного воздуха и пара. Компонент, наиболее ответственный за ограничение движения воздуха и водяного пара, должен располагаться снаружи стеновой системы. В холодных климатических условиях паронепроницаемая отделка должна находиться на внутренней стороне изоляции, чтобы избежать конденсации.

Отделка наружных стен

Материалы, обычно используемые в качестве внешней отделки в строительстве, включают лепнину, деревянный сайдинг, бетон или кладку, кирпичную облицовку и запатентованные системы внешней отделки, сочетающие изоляцию и финишные покрытия (например, EIFS).При выборе материала внешней отделки команда дизайнеров должна учитывать эффекты проникновения влаги, миграции пара и воздуха, а также эстетику, чтобы обеспечить соответствие замыслу проекта. При рассмотрении пористых материалов, таких как бетон или каменная кладка, следует учитывать способность этих материалов ограничивать миграцию влаги и пара в стеновую систему и из нее, а также их способность действовать как воздушные барьеры. Часто эстетическая внешняя отделка бетонной или каменной стеновой системы представляет собой нанесение краски или штукатурки.Эта внешняя отделка, а также структурный бетон или каменная кладка могут быть эффективными барьерами от атмосферных воздействий, но являются неэффективными замедлителями парообразования и лишь частично эффективными воздушными барьерами.

Материалы, используемые при строительстве наружных стен, классифицируются по их сопротивлению движению влаги через материал, когда существует разница в давлении пара между внутренней и внешней сторонами материала. Обычно выделяют три категории способности замедлителя образования пара:

  • Паронепроницаемость: меньше или равно 0.1 пермь
  • Полупроницаемость для паров: менее или равная 1/1 и более 0,1 / 1
  • Полупроницаемый для пара: более 1 доп.

Стены из бетонных блоков могут иметь проницаемость от 2 до 3 проницаемостей, тогда как у окрашенных штукатурных покрытий проницаемость может достигать 25 проницаемостей. Системы наружной окраски с толщиной сухой пленки от 1 до 3 мил, такие как коммерческие латексные краски, могут иметь от 5 до 10 пермь (рис. 7). Системы окраски являются хорошим примером того, как различаются требования для умеренного, холодного и жаркого / влажного климата.В большинстве частей страны системы окраски фасадов имеют высокие рейтинги проницаемости, а системы окраски внутренних помещений — более низкие показатели проницаемости. В жарком влажном климате требования к отделке стен прямо противоположны: внешние системы должны иметь более низкие рейтинги проницаемости, чем внутренние системы окраски.

Рис. 7. Многие наружные краски и покрытия могут действовать как адекватные замедлители образования пара.

Замедлители парообразования

Замедлитель парообразования требуется не во всех ситуациях. Оболочка здания (без специального антипара) может выступать в качестве адекватного барьера для диффузии пара.Во многих условиях использование воздушного барьера более важно, чем использование замедлителя образования пара. Хотя использование замедлителя парообразования не всегда необходимо, при использовании одного чрезвычайно важными становятся такие факторы, как проницаемость, расположение и использование нескольких замедлителей схватывания.

Тип и расположение пароизолятора могут значительно повлиять на накопление влаги и образование плесени. Например, пароизоляция стеновой системы, расположенная между теплоизоляцией и внутренним пространством здания, может достигать температуры ниже точки росы (точка конденсации в жарком и влажном климате, а внешний пароизоляция может быть ниже точки росы в северном климате). наружный воздух, позволяющий конденсату образовываться на внутренних поверхностях или во внутренних полостях.Чтобы избежать таких проблем, решения относительно пароизоляционных материалов лучше всего принимать на этапе схематического проектирования.

Существует несколько типов замедлителей образования пара (рис. 8). К жестким замедлителям схватывания относятся армированные пластмассы, алюминий и аналогичные материалы, которые относительно непроницаемы для потока влаги. Они механически закрепляются на месте и могут иметь герметичные стыки. К гибким замедлителям парообразования относятся фольга, ламинированная фольга, обработанная бумага, войлок и бумага с покрытием, а также пластиковые пленки. Стыки в этих материалах необходимо заделывать другим материалом.(Герметичное уплотнение стыков не является обязательным, если только замедлитель парообразования также действует как воздушный барьер и / или барьер для дождевой воды.) Некоторые материалы покрытия (например, эпоксидные смолы) также можно классифицировать как замедлители образования пара.

Рис. 8. Скорость передачи пара среди обычных строительных материалов сильно различается.

Проницаемость материала определяется его пористостью. Различные материалы, замедляющие образование пара, имеют разные показатели проницаемости в зависимости от того, сколько пара будет диффундировать через них в течение определенного периода и для данной области.Например, листовая алюминиевая фольга толщиной 0,002 дюйма имеет проницаемость 0,025, что означает, что она пропускает 0,025 зерна (1/7000 фунта) в час на квадратный фут площади на каждый дюйм перепада давления паров ртутного столба. . Напротив, 8-дюймовый бетонный блок (известняковый заполнитель) пропускает 2,4 зерна в час, что в 90 раз больше, чем у алюминиевой фольги, даже несмотря на то, что стенка блока в 48000 раз толще ( The Dehumidification Handbook , 1990).

Каждый из этих замедлителей образования пара может использоваться с системами стен, описанными ранее.Обычно стенки полостей каркасного типа включают в себя гибкие замедлители парообразования. Спроектировать расположение пароизолятора для бетонных или каменных стеновых систем может быть сложнее, чем для каркасных стеновых систем. Нанесенные покрытия особенно подходят для бетонных или кирпичных стен; Нанести систему внешней отделки непосредственно на залитую на место стеновую основу проще, чем создать промежуточное пространство (или нарост) на внешней стороне стеновой основы для установки пароизолятора. Более того, последний процесс может поставить под угрозу целостность стены.При выборе замедлителя образования пара для системы отделки наружных стен можно рассмотреть возможность использования краски, замедляющей образование пара.

Выбранный замедлитель образования паров должен иметь рейтинг проницаемости менее 1,0 перм. (Однако в регионах с умеренным климатом замедлитель образования пара с очень низким рейтингом проницаемости может создать проблемы, поскольку механизм диффузии пара меняет направление между зимними и летними месяцами.) Хотя критерии проектирования могут указывать на конкретный замедлитель образования пара или его толщину, Метод установки часто требует замены.Например, замедлитель образования паров из полиэтиленового листа может соответствовать критериям проектирования, но может не обеспечивать адекватного сопротивления разрыву во время установки в полевых условиях. Эффективность пароизоляции снижается при проникновении, хотя избегать всех проникновений не обязательно.

Также следует избегать использования двух видов отделки с низкой проницаемостью в стеновой системе, таких как полиэтиленовый замедлитель парообразования на внешней стороне и виниловое покрытие стен внутри. Такое расположение может позволить влаге задерживаться в стеновой системе без возможности высыхания в любом направлении, что способствует накоплению влаги и образованию плесени.Использование нескольких замедлителей образования пара в стеновой системе может быть успешным только в том случае, если практически исключено проникновение дождевой воды и проникновение наружного воздуха. Таким образом, достижение и постоянное поддержание положительного давления в здании имеет решающее значение в этой ситуации.

Барьеры и уплотнения для проникновения воздуха

Решение о включении специального воздушного барьера в конструкцию обычно принимается на этапе схематического проектирования. Воздушный барьер может играть важную роль в предотвращении проникновения от ветровой нагрузки или погодных условий, а также может способствовать повышению давления в здании.(Воздушные барьеры, называемые обертками для строительства обычно используются в северном климате для экономии энергии.) Правильное расположение воздушного барьера может быть таким же, как у атмосферного барьера и пароизоляции. Следовательно, иногда может быть экономически выгодно достигнуто хорошо продуманное сочетание барьера воздух / погода / пар.

Воздушный барьер в стеновой системе, однако, никогда не следует рассматривать как адекватное уплотнение оболочки, компенсирующее внутреннее пространство здания без давления и предотвращающее внутреннюю инфильтрацию.Оболочка здания должна работать с системой отопления, вентиляции и кондиционирования воздуха, чтобы создать герметичное здание. Поскольку полости, которые могут существовать в стеновой системе, обеспечивают потенциальные пути для наружного воздуха, поддержание надлежащего давления имеет решающее значение для предотвращения проникновения наружного воздуха в эти пространства.

Часто компоненты ограждающей конструкции здания, действующие вместе, могут действовать как эффективный воздушный барьер. ASHRAE признает, что цельный кусок фанеры или гипсокартона с правильной опорой может быть адекватным воздушным барьером.Однако соединенные части оболочки часто не будут столь же эффективными, если стыки не будут достаточно хорошо загерметизированы. В то время как эффективность пароизолятора линейно уменьшается с увеличением количества проникновений, эффективность воздушного барьера уменьшается экспоненциально по мере увеличения количества стыков, трещин и щелей. Таким образом, эффективность воздушного барьера зависит от того, насколько возможно непроницаемый для проникновения.

Изделия из дерева, включая листовые изделия и готовые плиты, менее эффективны в качестве воздушных преград при использовании обычных методов установки.Поскольку эти системы внешней отделки имеют тенденцию допускать проникновение воздуха из-за ветра и теплового воздействия, требуются дополнительные средства ограничения воздуха (и миграции влаги) через стеновую систему. Комбинированный воздушный / атмосферный барьер должен быть установлен на внешней обшивочной основе, особенно в каркасной стеновой системе, в которой используются изделия из дерева.

Эффективность комбинации изоляционной плиты и внешней отделки (например, EIFS) в качестве воздушных барьеров зависит от общей целостности композитной внешней системы.Если стыки достаточно ровные и плотные, система защитит ограждающую конструкцию здания от проникновения ветра и наружного воздуха. Изоляционные плиты с закрытыми порами и негигроскопичные (непоглощающие) изоляционные плиты более устойчивы к диффузии паров влаги, чем изоляционные плиты с открытыми порами.

Изоляция

Рис. 9. Некоторые типы изоляции могут также служить в качестве эффективных замедлителей парообразования. Особое внимание необходимо уделить толщине изоляции для достижения желаемой проницаемости.

Использование негигроскопической изоляции с закрытыми порами может помочь свести к минимуму высокий уровень влажности, который может образовываться в стеновых системах.По возможности изоляция должна быть установлена ​​рядом с замедлителем парообразования и должна располагаться внутри так, чтобы замедлитель пара не достигал точки росы во время работы системы кондиционирования здания (это условие применяется только в жарком и влажном климате, а в холодном — наоборот. климат). Некоторые типы изоляции могут также использоваться в качестве эффективных замедлителей парообразования (Рисунок 9).

Чтобы избежать проблем с влажностью, команда разработчиков должна учитывать, как прямой контакт с влажным воздухом влияет на конструкции стен.Тепловые мостики, которые позволяют конструкциям остывать ниже точки росы окружающего воздуха, могут вызвать локальную конденсацию на конструкционных материалах. Например, каркасная система с металлическими стойками в системе каркасных стен может действовать как тепловое короткое замыкание или перемычка, позволяя образоваться конденсату на внутренней или внешней части металлической стойки, даже если стена может быть хорошо изолирована.

Отделка внутренних стен

Выбор внутренней отделки является критическим фактором, особенно при проектировании с влажным климатом.Хорошо задокументировано влияние внутренней отделки на серьезные проблемы с влажностью и плесенью в существующих и новых зданиях. Использование непроницаемой внутренней отделки без полного учета инфильтрации, температуры точки росы на открытом воздухе и возможности конденсации в месте расположения первичного пароизолятора часто приводит к улавливанию влаги и проблемам с плесенью.

Виниловое настенное покрытие — это обычно используемая внутренняя отделка и обычно имеет низкую проницаемость (или очень высокую устойчивость) к миграции водяного пара через стеновую систему.Однако проблема может возникнуть в жарком влажном климате, когда наружный воздух проникает в полость стены, контактирует с более холодной поверхностью, конденсируется и не может высохнуть. (Высокие характеристики пароизоляции винилового настенного покрытия предотвращают высыхание конденсата.) Конденсация ухудшает качество отделочного основания, обычно гипсокартона, обеспечивая отличную среду для роста плесени. Следовательно, виниловое покрытие стен должно быть ограничено зонами, в которые маловероятно проникновение влажного воздуха (то есть внутренними стенами), или в зданиях, где может быть обеспечена положительная герметизация здания.В холодном климате использование винилового покрытия для стен не является проблемой и фактически замедлит нежелательную диффузию теплого влажного воздуха в полость стены, где на внешней стороне теплоизоляции может образоваться конденсат.

В целом, в жарком и влажном климате проницаемость материала внутренней отделки должна быть значительно выше, чем проницаемость других компонентов системы стен. Эта разница позволит парам влаги, попадающим в систему стен, мигрировать в кондиционируемое пространство, где пар в конечном итоге будет удален системой кондиционирования воздуха.Для обеспечения успеха все части стеновой системы, расположенные внутрь от теплоизоляции, должны быть более проницаемыми, чем компоненты, внешние по отношению к теплоизоляции. Опять же, обратное этому условию рекомендуется в холодном климате, где влага не должна задерживаться внутри полости на внешней стороне теплоизоляции.

Анализ точки росы на стенках

Каждая основная система наружных стен, используемая в строительстве, должна быть проанализирована для определения всего следующего:

  • Где будет точка росы
  • Какой будет температурный профиль
  • Где будет располагаться первичный пароизоляционный агент
  • Как далеко влага может проникнуть
    (профиль давления пара)

Эти концепции обсуждаются в Справочнике ASHRAE: Основы (Глава 27; ASHRAE, 2009).Завершение версии рисунка 12 (стр. 27.9) Справочника ASHRAE для каждого основного типа стены упростит анализ точки росы стен.

Процедура расчета диффузии водяного пара включает анализ каждого компонента системы стенок, включая толщину, проницаемость для паропроницаемости и тепловое сопротивление (значение R). Первый шаг — определить, какие температуры в помещении / на улице следует использовать для определения точки росы на поверхности стены. Минимально возможная температура поверхности стены в помещении часто может быть намного ниже проектных условий в помещении.Например, температура поверхности стены, на которую поступает разряд из регистра питания комнатного блока переменного тока, может составлять всего 60 ° F дБ. Аналогичным образом, температура внешней поверхности может превышать расчетные внешние условия, особенно на неотражающих темных внешних поверхностях.

Затем можно разработать температурный профиль для каждой системы стен (рис. 10а). В правильно спроектированной системе температура точки росы внешнего воздуха будет определяться изоляцией до тех пор, пока нет тепловых мостов (например, металлических шпилек).Важно сравнить расположение точки росы с предполагаемым расположением замедлителя пара, чтобы определить, останется ли барьер выше точки росы в условиях внешнего воздуха.

Следующая цель анализа точки росы — проверить, какой компонент стенки функционирует как первичный замедлитель образования пара, а затем сравнить его местоположение с местом поверхностной конденсации (поверхность точки росы). Для определения местоположения первичного пароизолятора в стеновой системе необходимо определить давление насыщенного пара на границе каждой поверхности компонента стены и сравнить его с сопротивлением давлению пара компонента.

Место внутри стеновой системы, где будет конденсироваться диффузный пар влаги, будет точкой, где давление пара равно давлению насыщения. Чтобы создать профиль давления пара через стеновую систему, необходимо определить перепад давления пара на каждом компоненте стенки (рис. 10b). Процедура разработки профиля давления пара аналогична процедуре разработки профиля температуры через стеновую систему; программное обеспечение доступно для помощи в проведении этого анализа.

Рисунок 10a (слева) . Определение температурного профиля системы наружных стен позволяет определить поверхности, на которых будет происходить конденсация. Рисунок 10b (справа) . Определение профилей насыщения и давления пара системы наружных стен также необходимо для максимального контроля влажности, поскольку это помогает идентифицировать компоненты стен, которые могут задерживать влагу.

Новые проблемы

Текущие и будущие исследования и разработки

Building Science Corporation обсуждает многие из текущих вопросов, связанных с конструкцией ограждающих конструкций зданий для контроля влажности.

Американская ассоциация воздушных барьеров предоставляет информацию, касающуюся науки и строительства воздушных барьеров.

В настоящее время следующие штаты включили требования к воздушным барьерам в свои коммерческие нормы энергосбережения.

Дополнительные ресурсы

Организации

Публикации

  • Предотвращение проблем с влагой и плесенью: Руководство по проектированию и строительству, Ch3M HILL, 2003 Справочник по основам , ASHRAE, Атланта, Джорджия, 2009
  • Руководство ASHRAE для зданий в жарком и влажном климате , Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха, Атланта, 2008 г.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *